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(Workshop on MHD and Radiation Methods for Pulsed Power)

Introduction to Radiation Transport

Gordon L. Olson
Transport Methods Group
Applied Theoretical and Computational Physics Division
Los Alamos National Laboratory
Los Alamos, NM 87545

Introduction

The first point to discuss is the meaning of “radiation”. Unfortunately, the definition of
this term depends upon the background of the person making the definition. To an
astrophysicist, radiation includes all electromagnetic waves propagating at the speed of light,
from radio waves, microwaves, infrared, visible, ultraviolet, soft x rays, to hard x rays. Another,
equally valid, view is that radiation includes those photons that interact with the electrons that
surround the nucleus of an atom. Photons that are created by nuclear reactions are considered to
be a different type of photon and are treated differently. This view makes sense because these
photons usually have very high energy and don’t interact with matter in the same way as lower
energy photons. Some people refer to radiation as “thermal” photons. This is an unfortunate
label because to other people “thermal” refers to the equilibrium radiation represented by a
Planckian or blackbody radiation field. Most of the time, when full transport of radiation is
necessary, the radiation is very non-Planckian and therefore is “non-thermal.” All of these
descriptions of radiation have their uses and the reader or listener in a conversation needs to be
aware of which model is being applied in a given case.

This lecture will present time-dependent radiation transport where the radiation is coupled
to a static medium, i.e., the material is not in motion. In reality, radiation exerts a pressure on the
materials it propagates through and will accelerate the material in the direction of the radiation
flow. This fully coupled problem with radiation transport and materials in motion is referred to
as radiation-hydrodynamics (or in a shorthand notation: rad-hydro) and is beyond the scope of
this lecture.



Definitions of Radiation Variables

The specific intensity 1 (r, n,v,t) of radiation at a point r, traveling in direction n, with
frequency v, at time #, is defined such that the amount of energy transported by radiation of
frequencies (v, v + 4v) across an element of area 4§ into a solid angle 4w in a time interval 4z is

Se = I(r, n,v,t)dS cos@dwdvdt, (1)

where 6 is the angle between the ray and the normal to the surface. The units of I are ergs cm™
sec’ hz? sr”, in cgs units. Most codes are written in mixed units that modify the time and
frequency (energy) to be in more convenient units that are of order unity for the problems that
are solved with that code.

Note that seven different independent variables are required to specify the intensity: three
in space, two in angle, frequency, and time. In contrast, most hydrodynamic variables are only
four dimensional, in space and time. This difference between transport and hydro has major
consequences for the computation time required to obtain a solution.

It is useful, both physically and mathematically, to define various angular averages, or
moments, of the radiation field. The monochromatic energy density of the radiation is the
simplest straight average (zeroth moment) of the specific intensity over all solid angles, i.e.,

E(r v, z‘ §I r,n,v,t dco lj d¢J duI 0,1, V, £ ), (2)

where the element of solid angle is given by dw =sin0d0dp = dudg. The cgs units of E are ergs
cm™ hz'. The total energy density (ergs cm™) is found by integrating over all frequencies:

E(r,t)=f:E(r,v,z‘)dv. (3)

The flux of radiation is defined as a vector quantity that gives the flow per unit area of the
radiant energy. This flux is the first angular moment of the radiation field:

F(r,v,t)Eﬂ;I(r,n,v,t)ndw, (4)

with units of ergs cm™ sec! hzl. The direction of this vector is in the direction that the

radiation is flowing. The foal flux is the frequency integrated value for the flux.

The second angular moment of the radiation field is the radiation pressure tensor:

P(r v, z‘ §I r,n,v z‘)nndw (5)

which has the same units as energy density (ergs cm™ hz'). The component form can be
written as:

R_-,-(r,v,z‘)El§1(r,n,v,t)nin -dw, (6)

where the form of the projection factors onto the axes (#;,7 j) depend on the coordinate system
being used. Independent of the coordinate system, P is clearly a symmetric tensor, P; = P;;. The
frequency integrated pressure is the quantity that contributes to the total pressure, matenal plus

radiation.



In the introduction, a blackbody radiation field was mentioned. This is the distribution of
radiation produced by a material in exact thermal equilibrium with itself and its surroundings. It
can be written as:

4n 8uhv’

ETE(V’T) = BV(T) = TBV(T) = m’ (7)
where 4 is the Planck constant and £ is the Boltzmann constant. The subscript TE is used to
emphasize that this is the energy density in the limit of Thermal Equilibrium. Integrating over
frequency, one gets ETE(T)=aT4, where 4 is the radiation constant (7.56464e-15 erg cm™
_ deg™). In this limit, the frequency integrated radiation pressure is isotropic and is given by

)Ll -4 o
= 4.6 kb [#7(100 V)]

The last line indicates that if you measure the temperature in energy units of 100 eV, the
proportionality constant of 7** that gives the pressure in kilobars is 4.6. The material pressure for
a solid at this temperature is much higher. However, in a low-density material, this pressure
must be compared to the gas and magnetic pressures.

Transport Equation

There are rigorous and semi-rigorous ways to derive the radiation transport equation. Here
I will merely write it down and motivate the different terms in the equation:

(%%+ %)I(r, n,v,t) = n(r, n,v, t) - x(r, n,v,t)I(r, n,v, z‘). 9)
Consider an element of material of length ds. The left-hand side calculates the change, in time
dt, in the energy of the radiation field traveling along a direction n as it passes through material.
The difference between the amount of energy that emerges at position r + Ar at time # + At and
the amount incident at (r, #) must equal the difference between the amount of energy created by
emission from the material [7)(r, n,v,#)] and the amount absorbed [ x(r,n,v,2)I(r, n,v,z)]. The
description of the path length differs in different coordinate systems; therefore, the form of the
term (d/ds) will change with coordinate systems.

x(r,n,v,z‘) is the opacity, extinction coefficient, or the total absorption coefficient of a
material. In units of cm™, it indicates how much energy is removed from a beam of radiation as
a function of position, direction, frequency, and time. The opacity is the sum over all atomic
states that can absorb at frequency v plus the continuum processes that contribute at v, including
both scattering and true absorption. Its inverse, 4, =(1/x,) cm, is the mean free path of a
photon at this frequency in this material.

n(r, n,v,t) is the emission coefficient or emissivity of the material, defined in terms of the
amount of energy released by a material per unit volume, per second, per unit frequency, per ster-
radian of angle, i.e., its units are ergs cm™ s™ hz? sr. In a stationary medium, or in a frame of
reference moving along with the fluid, both the absorption and emission coefficients are



isotropic, i.e., not dependent on the angle of absorption or emission. In more general cases, they
are not isotropic due to Doppler effects.

The optical depzh is a very convenient dimensionless quantity that measures the number of
mean free paths along a ray. Defined between two points, it is given by:

T(rl, r2,v,t) = Ex(r, n,v, t)dr , (10)

where ds is a path-length increment from 5 to 5. In its differential form, the incremental
optical depth is given by dr = yds.

The transfer equation is often written in terms of the source function:

2 YT t
S(r,n,v,z‘)zm. (11)
X( r’ n, V’ t)
For example, in a static planar medium the fransfer equation reduces to the simpler form:
" o, _ S, -1, (12)
o,

where, for simplicity, the function arguments of position and angle have been dropped and the
frequency dependence is denoted by a subscript. If the source function and optical depth are
known functions, this equation can formally be solved for all rays going in the positive z
direction
~(r,-t)/ 1
I+(7:V,,u,v) = I+(O,/i,v)g_TV/u +J.:V S(t)e ' dt/pu, (13)

for 0su<1, I +(T , ,u,v) is the incident radiation at 7, = 0. Similarly, for rays going in the

opposite direction, =1 < 4 <0, and a boundary condition of I (T}, u,v), the intensity is
_ (t=7,)/
I_(Tv,u, v) = I_(Tv,u,v)g(Tv W)/ 1 + LTV S(z‘)e dt [(—pu), (14)

where 7, is the monochromatic slab thickness.

The solution given by Egs. (13) and (14) is called the formal solution of the equation of
radiative transfer. The solution can be calculated only if the source function and optical depth are
known in advance. In general, the source function is known only as an implicit function of the
specific intensity; therefore, the straightforward integrations can not be done.

Note that the time-dependent Eq. (9) was called the #ransport equation while the static
Eq. (12) was called the fransfer equation. This distinction between time-dependent and time-
independent treatments is not universally agreed on by all authors. Some use the words transport
and transfer interchangeably.

In an LTE plasma, ie., one in Local Thermodynamic Equilibrium, the source function
becomes very simple

8, =B,(T). (15)

In this case, if the temperature distribution is known, then one could calculate the formal
solution.



A physically more accurate description is to recognize that the total extinction coefficient is
made up of absorption and scattering components:

xV = KV + O-V' (16)
Then the emissivity and source function become:
n,=x,B,+o (cE /47:) (17)
B, + 4
L . T . (18)
k,to,

The first term represents the thermal emission from the local plasma at a given temperature.
However, the second term represents scattered radiation that can come from any direction into
" any other direction. From Eq. (2), one sees that this term is proportional to the integral over all
angles of I,; therefore, the transport equation has now been transformed into an integro-
differential equation. This is clearer if one combines these equations to get

” d, « o, cE

LN S 19
at, 1, v X, 4n v (192)

or

aI
ar

This equation assumes coherent isotropic scattering, i.e., the frequency does not change in a
scattering process and the photons are redistributed uniformly in angle. The solution is coupled
in space by the derivative term and in angle by the integral term. For this 1D equation, a typical
problem has hundreds or thousands of spatial zones, 4 to 16 angles, and 30 to 300 frequency
points. So a typical 1D problem can have a large number of variables: 1000><8><50 400,000. In
3D one needs more spatial points and angles: (1000)°x48x50 =~ 2. 4x10™. This is why detailed
3D transport calculations have not yet been done. For demonstration purposes and for some
astrophysical problems, fewer spaual points are required. For a grid of 100°, the total number of
variables drops to only 2.5x10°. Solving the coupled equations for this number of variables is still
a nontrivial task. This is why full transport to date has been done on a routine basis only in one
or two dimensions. By exploiting the symmetries of a problem, the dimensionality of a problem
is reduced to make it tractable. The next section presents approximations to the transport theory
that also make solutions more feasible.

= ELBV_ (19b)

\4

Moments of the Transport Equation

Angular moments of the transport equation are both physically important and
mathematically useful. In Eq. (9), the (8/ as) term needs to be replaced by V in order to use

vector notation in what follows. Multiplying each term by dw/c and integrating over all solid
angles gives the zeroth moment equation

jaa]i :V F, 35[ (r,n, v,t)—x(r,n,v,t)I(r,n,v,t)]dw/c. (20)



The first moment equation is found by multiplying each term by ndw/c and again integrating
over all solid angles:

1 dF,

2 ot

Equation (20) is also called the energy balance equation for the radiation field. Integrating
this equation over a fixed volume element and using the divergence theorem, one sees that the
rate of change of the radiation energy in the volume equals the total rate of emission from the
material, minus the total rate of energy absorption by the material, minus the net flow of
radiation energy through the volume element’s surface.

+V P = § [n(r, n,v,z‘) - x(r, n,v,z‘)I(r, n,v,t)] ndofc. (21)

i Similarly, Eqs. (21) are called the momentum equations for the radiation field. Integrating
these equations over a fixed volume element and using the divergence theorem, one sees that the

rate of change of radiation momentum in the volume equals the net rate of momentum input
into the radiation field by the material, minus the net rate of absorption of radiation momentum
by the material, minus the rate of transport of radiation momentum through the volume
element’s surface. The last term of Eq. (21), when integrated over frequency, represents the
radiation force, per unit volume, on the material:

fr= J.owdv§ x(r, n,v,t)I(r, n,v,t) ndofc (22)

In a static medium, the absorption and emission coefficients are isotropic. Then the angle
integrals in the moment equations can be performed to give

19E,  1g.x, =(4’”7v)_ E, (23)
¢ ¢ ¢ c

1% L §+P, =1, (24)
¢ Of

The momentum equation is a vector equation; therefore, it actually represents one, two, or three
component equations in one, two, or three dimensions, respectively. By using these moment
equations, the size of the problem as been reduced (in 3D) from say 48 angle-dependent
equations to four angle-independent equations. Unfortunately, a difficulty has appeared. One
can solve the moment equations for E and F only if P is known. One could write down the next
higher moment equation and solve it for P, but it would include the next higher moment as an
unknown. Therefore, this system of equations is not closed.

One of the closure methods is to define the wvariable Eddington tensor, £ =P/E, and
rewrite Eq. (24) as

19F,

c ot

In one dimension, the Eddington factor is a2 number that varies between one third and unity. It
is a dimensionless ratio that accounts for only geometry factors. Given an initial guess for the
radiation field, one can calculate the moments and thus f. In general, because it is a ratio, f is
more accurately known than either E or P. Therefore, the Eddington tensor can be put into
Eq. (25), the solution found, and then a new Eddington tensor can be calculated. This

+cVe (f,E,)=-2F,. (25)



procedure quickly converges to the transport solution of the problem. This method has been
widely used in astrophysics. For a discussion of its application to LANL problems, see LA-UR-
82-961 by Weaver, Mihalas, and Olson.

Radiation Diffusion

In a steady-state hohlraum, the radiation is isotropic so the Eddington tensor becomes a
diagonal tensor with values of one third for all the diagonals (f = 31).In this simple limiting
case, Eq. (25) is greatly simplified:

10F,

. E" + '%ﬁEV = —'vav. (263)

This equation is often called the P, equation. It can also be derived in 1D by assuming that
I(u)=Iy+ ply, a first-order angular expansion (the first-order Legendre expansion, hence the
name “P,”), and calculating the moments of Eq. (9). The main physical disadvantage of the P,
equation is that in the optically thin limit, with streaming radiation, the propagation velocity is
¢/3 =0.577¢, rather than the correct value of c. A trivial modification, that changes this
asymptotic velocity to be the desired value of ¢, is to divide the time derivative term by three:

13,

3c d¢

Further simplification is obtained by throwing away (ignoring) the time derivative in Eq.
(26), to get Fick’s law:

+ -%va =—x/F,. (26b)

¢
3z,
where D is referred to as the diffusion coefficient. Substituting this into Eq. (23) gives the
radiation diffusion equation:
12z,
¢ Ot

F, =-

v

VE, =-cDVE,, 27)

~-V+(DVE,)= (4’”“ ) ~ By = 2By — 2vEs (28)
[

where the second form of the right hand side replaces the emissivity by an LTE source function
from Eq. (7). Since one has already assumed that the local radiation pressure is isotropic, it is
quite reasonable to also assume that the local emission is in Local Thermodynamic Equilibrium.

When the opacity becomes very large, such that the mean free path of a photon is much
less than the distance over which physical quantities such as temperature are changing, this is
referred to as the optically thick limit. In this limit the time derivative of the flux is a very small
term and all three equations [Egs. (26a,b) and Eq. (27)] have similar behavior. J. E. Morel has
shown that, because a linear dependence of the radiation on angle in allowed by these equations,
they have the same zeroth- and first-order expansions as the transport equation. So all of these
approximations should be reasonably accurate near the diffusion limit.

In the optically thin limit, where the opacity is very small, throwing away the time
derivative means that the diffusion equation [Eq. (28)] can have an infinite propagation velocity.
That is, energy can propagate faster than the speed of light. To deal with this problem, people



have modified the diffusion coefficient using ad boc theories to create various flux-limited
diffusion equations. Unfortunately, these artificial corrections modify the solution obtained such
that it is correct only in the two limiting cases of asymptotic diffusion and pure streaming of
radiation. Whereas Eqs. (26)-(27) are first-order accurate in the diffusion limit, most flux-
limited diffusion techniques are only zeroth-order accurate. Therefore, near the diffusion limit,
most flux-limited solutions will be less accurate. Another problem is that flux limiters are
nonlinear. This nonlinearity must be iterated to convergence or lagged in time.

Note that Eq. (26b) could be found by adding Eq. (26a) with a weight factor of one third
to Eq. (27) with a weight factor of two thirds. In fact, this is how it was derived. In the optically
thin limit, P; propagates radiation too slowly while diffusion propagates too fast. Therefore, a
- weighted average of these two equations give the desired propagation speed of ¢. T have proposed
that Eq. (26b) be referred to at the “P,,;” equation.

Because of all the above considerations, the recommended method is to use P;/; and replace
Eq. (28) with:

19E,
¢ of

The time and space finite differencing of this equation is similar to that discussed in the
previously mentioned report by Weaver, Mihalas, and Olson. The time differencing is more
complicated than in Eq. (28); however, the improved accuracy in the diffusion limit and the
automatic linear flux limiting in the optically thin limit should make the effort worthwhile.

1 JF,
3¢y, of

—f/-(DﬁEv)—?-[ ]=xvﬂ3v—vav (29)

In the literature, there are references to the P; equation being numerically unstable.
However, these authors are not referring to the form shown in Egs. (26) and (29), they are
talking about manipulating these equations into a form resembling a wave equation. In that
form, with second order time derivative and a second order spatial derivative, there can be
stability problems. In the form presented here, one has unconditionally stable solutions. When
attempting to propagate a square wave, P; will have some oscillations or “ringing” behind the
wave front, but this is not an instability. Using P, reduces these oscillations by a factor of three.

As an aside, some people do not consider diffusion to be transport. Other people consider
diffusion to be a simplified subset of transport theory. So in conversations with people, when
they talk about “radiation transport,” they may or may not be including diffusion.

Gray Diffusion

A further simplification to diffusion is to reduce the multi-frequency or multi-group to a
weighted mean result, the gray-body approximation. Starting with Fick's law, frequency
integrate it to get

L gy=— L VE. (30)
Xy 3

This defines a properly weighted total opacity (%) such that the gray and multi-group solutions
will agree. Unfortunately, one must know the solution before one can define this average. Also

F=["F,dv= —% N



with this definition, one can not tabulate ahead of time what the opacity is as a function of
temperature and density.

A better approach is to realize that a diffusion solution is locally very close to LTE. In this
limit, one can do a Taylor series expansion that is locally one dimensional:

8,(6)=Bulty) = St ) — L. 1)

1 n
n=0 n: a""V

Inserting this into the formal solution gives

0B, ;9B
I(z,u)=8B tu—Hp At (32)
o[ ) = By(5) dr, ot
where it is assumed that the optical depths are large enough that one does not see boundaries
and curvature departures from 1D are small. From this equation, one can calculate the moments

E,(z,)=B,(r )+§a§ +... (33a)
3

Fv(¢V)=%ng+§aa?+ (33b)

B(w)=5B,(x)+ ;aaf” (33¢)

In optically thick materials, the first term in each case is the significant term. For our present
needs, Eq. (33b) can be rewritten as

(TV)= ¢ aCBV —_ﬁ.a__fB.‘L.a_Ti (34)

33, 30T dzy,

F

v

Using this expression in Fick’s law and treating E with a similar chain rule expansion gives:

1 9B, v g 0T _ ¢ 0E _ ¢ =0dE,
xy 0T |0z 37 0z 379 3z

= —— = 9By V gy =—— r'ati av §_T_
3;5 0 9z 37|70 oT 0z
This defines the Rosseland mean opacity, the mean opacity that gives the same total radiation
flux in the gray approximation as in the multigroup solution:

dv

F= j de——-[
(35)

-1 3B, - 1 3B,

— dv
A _0x T g T (36)
xR_ J‘“avaa,v J‘ aBV v ’

0 9T 0 9T



where it doesn’t matter which form of the Planck function is used because the (47:/ c) factor

cancels. When doing multi-group calculations, it is common to use this Rosseland weighting to
define the opacity within each group in order to preserve the radiation flow within each group.

The terms on the right hand side of the transport and diffusion equations are much more
straightforward. For them it is only necessary to define the Planck mean opacity:

1 o

Xp= EJO xvB,dv. B 37
‘Then the frequency-integrated (gray) diffusion equation can be written as

10E - (VE

et v/ [ i B_E 38

L (Lol (350
and the frequency-integrated P, equation can be written as

1E & (VE —V- 1 oF =XP(3‘“E)- (38b)

¢ ot 3xr 3cxr 0O

These equations represent the simplest, most basic forms of radiation transport, and in optically
thick regions, far from any boundaries, are excellent solutions to the transport equation. Even so,
it is more costly to solve than most hydrodynamics equations. Because hydro equations can be
advanced in time using only local information, one can use spatially explicit solution methods.
For stability and accuracy reasons, the radiation diffusion equation must be solved spatially
implicitly at the new time step and the opacities should be also implicit at an average time or at
the advanced time. All spatial zones are coupled to all other zones.

Note that the definitions for the Rosseland and Planck means only require knowledge of
the monochromatic opacity and the Planck function. No knowledge of an actual radiation field
is required. Therefore, these values can be tabulated once as functions of temperature and
density, and then used for any gray transport problem.

Figure 1 shows a comparison of the detailed opacity from T-4 libraries with a 50 group
multigroup representation and the Planck and Rosseland means for zinc at a temperature of
1 keV (calculated by R. E. H. Clark’s TOPS code). The detailed opacity shows structure that
disappears in the multigroup data. This is largely due to the inverse weighting of opacity in
calculating the Rosseland mean for each group. If large and small opacities occur in the same
group, the small opacities dominate the mean. This is also why the gray Planck and Rosseland
values differ significantly. Approximating detailed opacities by 50 group averages seems very
crude; however, when going from multigroup to gray, a tremendous amount of physics is lost.
Users of transport/diffusion codes need to be aware of what physics they need to model a given
problem.

Figure 2 shows a similar comparison for zinc at 3 keV. The details change dramatically
with a factor of three difference in temperature. The mean values drop by almost an order of
magnitude. Comparing Figs. 1 and 2 gives an indication of how nonlinear the scale factors are
in the transport and diffusion equations. Not only does one have to solve large systems of
equations, the coefficients are highly nonlinear! This nonlinearity and the strong coupling

10



between material and radiation makes radiation transport more challenging than neutron
transport.

Radiation Coupled to a Material Equation

Up to this point, when referring to temperature, it has been assumed that one was
referring the radiation temperature. Now one must start to think about multiple temperatures:
radiation, material, electron, and ion. If material and radiation are instantaneously in
equilibrium, so that their temperatures are identical, then the absorption and érmission terms of
Eq. (38) exactly cancel to give the equilibrium diffusion equation:

10E & (~S

~—=V+|DVE). 39
¢ ot ( ) (39)
This is sometimes referred to as the radiation conduction equation because, in the absence of

absorption and emission, it looks like a thermal conduction problem.

By allowing the material and radiation temperatures to differ, one has nonequilibrium
diffusion:

%aa—f— +(DVE) = 1,(B- E) (40a)
oS-V (D7) =-2s(8-5) (05

where the thermal conduction coefficient, D,, has been cast into the form of a diffusion
coefficient in order to parallel the structure of the radiation diffusion equation. It is labeled with
a subscript of e because electron thermal conduction usually dominates ion thermal conduction.
Cy is the material specific heat and T"is the material rather than radiation temperature. Note
that the right hand sides of Eqs. (40a) and (40b) are identical except for opposite signs. This is
necessary in order to conserve total energy. Energy subtracted from the radiation must be added
to the material, and vice versa. Note that the thermal diffusion coefficient is nonlinear and may
be flux limited in ways similar to the radiation diffusion coefficient. Of course, the material
energy balance equation, Eq. (40b), can also be coupled to the full transport equation. Coupling
to the full hydrodynamics equations will not be presented here. '

The classical Marshak wave solution is to the equilibrium diffusion equation, which is not
of general interest to realistic physics models. There are very few analytical solutions to the
nonequilibrium diffusion equations that can be compared to numerical solutions to verify their
accuracy. However, Su and Olson (LA-UR-96-1799, Annals of Nuclear Energy, 24, pp. 1035-
1055, 1997) found a nontrivial problem for which they could generate both the exact diffusion
and the exact transport solutions. Figures 3 and 4 show the solutions for the radiation and
material energy densities, respectively. The diffusion and transport solutions are exact, while the
P, solution is numerical. This is an infinite medium problem where there is an internal isotropic
radiation source extending from —0.5<7<0.5 that is turned on at time zero. After 10 units of
time, the source is turned off. For the rest of the details of the problem specification, see the
cited reference.

11



Initially, the radiation builds up only near the source of radiation. The material lags behind
the radiation because of the heat capacity of the material. With increasing time, the radiation
wave propagates out away from the origin. As discussed above, the diffusion solution moves too
fast and gets ahead of the transport solution while the P; solution lags behind the transport
solution. As one would expect, a Py solution (not shown) is much closer to the transport
solution than the P, solution is. Late in time, long after the source is turned off, all solutions
converge to the same equilibrium diffusion solution. Note that while the source is on, the
transport solution for the radiation energy density near the symmetry plane differs significantly
from the other solutions.

"This problem is “easy” because it has an isotropic radiation source and a gray opacity that is
- independent of temperature. In more realistic problems, these simplifications are gone and the
differences between diffusion and transport can be much larger.

Boundary Conditions

To give a complete description of the mathematics of radiation transport, it is necessary to
discuss boundary conditions. Formally, for the transport equation one should specify an incident
specific intensity as a function of angle and frequency at each boundary. For the moment
equations and for diffusion, one calculates half range moments of the incident intensity. In
other words, one must integrate over the half-space angles exterior to the region of interest.

For many of the problems of interest in laboratory experiments, there are no external
sources of radiation. All the energy is generated internally. When pieces of a larger problem are
calculated, it is best to use a flux boundary condition rather than a temperature boundary
condition. For example, a 1 keV blackbody illuminating a material should be specified as an
isotropic boundary condition on I when doing transport and on F™ when doing diffusion.
Many people, who are more accustomed to hydro than transport, think of a boundary condition
in terms of a fixed temperature source, i.c., the boundary or ghost cell in a calculation is pinned at
a user-specified value. This is appropriate for material conduction, but not for transport. Even in
the diffusion limit, one should think of the radiation flow. It is the flux of radiation energy
across a surface that is fundamental, not the temperature of that boundary. So if there are no
external sources, specify a zero incident flux, not a zero temperature.

The difference between a unit temperature source and a unit flux source for a diffusion
calculation is shown in Fig. 5. The position of the wave front is roughly the same in both cases,
but the total integrated energy in the slab is very different. With a temperature source more
energy is forced into the slab more quickly. This example uses a simple constant opacity. In a
more realistic nonlinear problem the differences would be greater. Note that at large times the
two solutions approach each other. The details at the boundary become less important at late
times because the diffusion becomes dominated by the bulk amount of energy in the slab.

Special Topics

If a plasma is extremely optically thick and has a uniform temperature, its emitted radiation
may be close to a blackbody like an incandescent light bulb. However, if it is low density like a
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fluorescent light bulb, the spectrum is made up of discrete lines from electrons changing atomic
levels within an atom. Modeling such a plasma requires modeling the electron populations in
those atomic levels. This requires that an atomic kinetics calculation be coupled to radiation
transport in the discrete atomic transitions and in the continuum transitions. This is a highly
specialized area of radiation transport that has been addressed by astrophysicist in detail for the
last several decades. Mihalas’s Stellar Atmospheres book is an excellent starting point for those
interested in the topic. This non-LTE transport coupled to atomic physics is necessary for
modeling spectroscopic experiments designed to measure plasma temperatures and densities.

The most extreme form of this type of physics is found in lasers. Remember that the
acronym stands for “light amplification by simulated emission of radiation.” This amplification
occurs in an atomic transition that has a negative opacity. From the formal solution of the
transport equation, it is clear that a negative opacity implies exponential gain in the specific
intensity! This apparent exponential gain is limited by the finite rates of the atomic transitions,
so there is a limit to how much energy can be extracted in a laser. For a period of years, this
laboratory was interested in using tabletop visible wavelength lasers to produce x ray lasers.

Book References:

D. Mihalas, Stellar Atmospheres, 2nd Ed., 1978, W. H. Freeman & Co. This book has
extensive chapters on radiation transfer, both LTE and non-LTE. Although written for
astrophysical applications, it is widely applicable to laboratory plasmas.

D. Mihalas and B. W. Mihalas, Foundations of Radiation Hydrodynamics, 1984, Oxford
Press. This book thoroughly discusses the coupled problem of rad-hydro and gives extensive
references to the rest of the literature. The writing of this book was partially subsidized by X-
Division. Now it is out of print; however, it has been scanned and placed on a web site. The
location can be found by doing an on-line search starting at http://lib-www.lanl.gov. Click on

Online Search and follow the directions to search on the author’s name of Mihalas.

G. C. Pomraning, The Equations of Radiation Hydrodynamics, 1973, Pergamon Press.
This book is shorter and less comprehensive than the Mihalas & Mihalas book, but it also has a
very different perspective. This one was written from a nuclear engineering rather than
astrophysical point of view. The terminology differences may make one book easier to read than

the other, depending on your background.

G. C. Pomraning, Radiation Hydrodynamics, LA-UR-82-2625, (182 pages) notes from a
short course given at Los Alamos. This duplicates parts of his book with only a few new things
added. It is a convenient reference if you can find a copy.
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Material Energy Density

L

® Source: x < 0.5, c£ < 10;
— ~ solid — diffusion, dashed — P1,
™ symbols — transport
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Radiation Energy Density

xz — depth into slab

Figure 3. The radiation energy density is shown as a function of
position at four different times as labeled (from Su and Olson, 1997).
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Figure 4. Like Fig. 3 except is for the material density.
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Figure 5. Two solutions of the diffusion equation are shown as functions of space at different
times as labeled. For the solid lines, a flux boundary condition was used. For the dashed lines, a

temperature boundary condition was used.



