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" PREFACE -

, I<Oﬁ Marchrzz through March 26, 1982'i gave a éhor;Aeourse at
£05‘ Alamos on radiation hydrodyhamics{ The notes which
constitute this report wére prepared for use in that course. The
course consisted of 14 unclassified lecture hours, and two
separate classified discussion sessions. The wunclassified
lectures were videotaped and these tapes are availadle for
viewing thfough'the Los Alamos Traning Office. ‘

. Much of the material in these notes was taken from ny book:
The Equationé'&f Radiation Hydrodynamics, Pargamon Press, Oxford,
'1973. This book was distributed to the persons attending the

courses References for this material as well as general reading

references can be found in the book. Some new material not found
in t¢he book was i1included in the class and 4in these notes.
References for this material are given at the end of the notese.

It 1s a pleasure to acknowledge the hospitality of the
Laboratory, and the help of Gloria Cordova of the training office
in arranging this course. Keith Taggart (X-7) very kindly
offered to érrénge for the typing of these notes, and Bob Weaver
(X~7) undertook the task of arranging the classified discussion
sessionse. A very special thanks 1s due Tessa Lippiatt. She
delivered on Keith's offer and prepared this typed version of the
notes.s As 1s evident, she did a beautifql jobe I offered her a
job at UCLA, but she prefers the clean air of Los Alamos.

Go C. Pomraning
September, 1982
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* _ ABSTRACT OF COURSE '

This course was intended to provid ﬁﬁe participant with an
introduction to the theory of radiative transfer, and an under-
standing of the coupliag of radiaﬁive.processes to the equations
describing compressible flow. ' At moderate temparatures
(thousands of degrees), the role of the radiation is Primarily
one of transporting energy by radiative processes. At higher
temperatures (millions of degrees), the energy and nomentum
‘densities of tﬁé radiation field may become comparable to or even
dominate the corresponding fluid quantities. In thié case, the
radiation field significantly affecté the dynamics of thea fluid,
and it 1is the description of this regime which is generally the
charter of "radiation hydrodynamics”. The course provided a

discussion of the relevant physics and a derivation of the
corresponding equations, as well as an examination of several

simplified models.,
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'RADIATION - HYDRODYNAMICS
Los Alamos National Laboratory Short Course

March 22 - March 26, 1982

. by

G. C. Pomraning

I, INTRODUCIIO&

We will be cohcernéd~w1th the propagation of thermal radia=
tion through a fluid, and the effect of this radiation on the
hydrodynamics describing the fluid .motion. The term “thermal
radiation” means electromagnetic radiation of atomic, as oppbsed‘
to nuclear origine Such radiation is generally emitted dy matter
in a state of thermal excitation, thus accounting for the
designation of the radiation as thermal. The energy deansity of
this type of radiation in an enclosure whose walls are maintained
at a constant and uniform temperature is given by the well-known
Planck formula. More generally, however, the energy distribution
of the radiation field 1is not described by the Planck function.
Under certain rather unrestrictive conditions, the stéte of the
radiation can be described by a kinetic (transport). equation;
referred to historically as the equation of radiative transfer.
This introduction to‘radiation~hydrodynamics will, in large part,
concentrate on various formulations of the equation of transfer
describing the propagation of thermal radiation.

The importance of thermal radiation in physical problems
increases as the temperature 18 raised, primarily because the
radiation energy density associated with a Planck distribution
varies as the fourth power of the temperature. At 1low tempera-
tures (say, room temperature) radiation can generally be
neglected entirely in most problemse. At moderate temperatures
(say thousands of degrees) the role of radiation is primarily one



of transpbrting enéfgy'gi rédiative ﬁroéesses. At higher temper-
atures (say, millions.of degraes) the energy and. momentum dengi-
ties of the radiation field may become ‘comparable: to oy even
dominate the corresponding fluid_quantities. In this case, the
radiation field significantlylaffects the dynamics of tha fluid.
Hydrodynamics with explicit account of the radiation enargy and
momentum contributions constifufes the charter of radiation-

hydrodynamies. Such consideratidné find their practical _applica=-

tion 1in the understanding of certain astrophysical and nuclear

weapons effects phenomena.
These notes are roughly -divided into four major topics:

1. Introductory Material, which includes a summary of the

basic fluid dynamics equations without radiative contributions,
an introduction to the radiation field and its interaction with
matter, and the fluild equations in the presence of radiation.,

2. The Equation of Radiation Transfer, which includes both

an Eulerian and Lagrangilan derivation, boundary and initial
conditions, specific geometry representations, an integral
equation formulation, Peierls' equation, induced processes, the
concept of 1local thermodynamic equilibrium, Kirchoff's law,

transport in a vacuum, and relativistic corrections.

3. Approximate Models of Radiative Transfer, such as the

Eddington (diffusion) approximation, asymptotic diffusion theory,
variable Eddington factors and flux limiters, equilibrium diffu-
sion theory, Marshak waves, the spherical harmonic (P-N) method,
the discrete ordinate (S-N) method, the Monte Carlo method, the
formal solution (methods of characteristics), and the multi-group

method, introducing the Planck and Rosseland means,

4 The Interaction of Radiation With Matter, including a

discussion of the absorption coefficient, Compton and inverse

Compton scattering, and the Fokker-Planck treatment of

scatteringe.
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A, The Fluid Equations Without Radiation
The non-relativistic, ideal fluid equations are, in the

Eulerian conservative form:

Conservation of masg (continuity)

ap +> - , “
3e + Veew) =0, ' | (1)

Conservation of momentum (force balance)

2(pu) Ve (oun ‘ v :
5t puu) + Em = 0 , (2)

Conservation of energy

9 1 1 SN

T (7. pu2 + E ) + Ve[(5 pu? + E + P Ji] =0 (3)
where

p = fluid density

3 = fluid velocity

Pm = fluid (material) pressure

Em = fluid (material) internal energy density.

These three equations are supplemented by an equation of state

such as

P_=P_(p,T) , | (4)



’éﬁdga&thefquynamiéféxpréééioh/fbr”the‘ipﬁérnél'eperéy such as
E =_Em(D,T)7’,wf3> . o . ©(5)
where

T = £luid temperature . ‘ . | (6)

Equations (1)’ through (5) represent seven equations for the seven

unknoswns:
-+ . -
P, u (three components), Pm’ Em’ T .

Note that the right hand sides of Eqse (1) through (3) will not
be zero if external sources of mass, momentum, and energy are

presente.

B, The Fluid Equations With Radiation
If radiation 1s important ({ee., if the temperature {is high

enough), these balance equations need be modified to include the
radiation contributions. We define

= radiation energy density
= radiative flux of energy

radiation momentum density

= radiative flux of momentum

tx
é*“a?& ast
]

The balance equations for momentum and energy, Eqse. (2) and (3),

then become

) +> * ++ 1
37 (pu + M) + Ve(pud + M) + 3pm =0 |, (7)



'«',3; L% | 2 + E +.E) + 3 [(% pu? +(E;‘f Pm)3.+ ?] =0 . (8)

We have now introduced several new dependeut variables. hamely E,
T
Fod,,
that -these new variables are simply angular moments of a distri-

bution function of the radiation field.

and Mf We obviously need more equationss We now show

C. The Radiation Field

"We consider the radiation field to consist of ‘point,
massless partiélés called.ghotons. (We discuss the validity of
this descriptiqn later). With each photon we. asgociate a
frequency v such that -the energy of a photon is hv, where h {s

Planck's constant. It is known that such a massless particle
carries momentum of magnitude hv/c, where ¢ is the vacuum speed
of light. )

At any time t, six variables are required to specify the
position of the photon in phase space, namely three position
variables and three momentum variables. He denote the three
position variables by the vector r. In radiative transfer work
it 1is conventional to use, rather than the three momentum
variables, three equivalent variables. These are the frequency v
and the direction of travel of the photon § We then define the
distribution function £ A

f = f(?,v,ﬁ,t) , (9)
such that
dn = fdrdvad |, (10)

>
where dn is the number »>f photons (at tine t) at r,V,ﬁ, in

the six-dimensional differential volume d;dvdﬁ. In radiative



dtransfer, it 18 conventional to introduce ‘the 8p801fic 1ntensity

of radiation, defined as
‘i(;,v,ﬁ,t) = chvf(;!v,ﬁ;t)‘i. ‘ ~" A (11)

In terms of f (or I), we can compute the radiative terns in
the fluid eguations. We have

CE = [Tav [ afihv)s =-% [ av [ aBr , (12)

) 0 Y ¢ : o ha

F=["av [ afitclynv)e = [T av [ add1 , (13)

o 4q o 4 ‘

M. = [7 qv dﬁl‘—‘ﬁfa-l—- ® a4 afdr = L F |

d ‘{ ‘{TI' ( ¢ ) A 02 g v !{T{ 02 . (14)

i< o hvly, 1 qw 3

My o= [T av [ ali(ed) (22)f == [Tav [ afBi1 =3 . (15)
£ o 4x ¢ ¢ o b

>

where‘the radiation pressure, ?, is defined by the 1last equality
in Eq. (15). Hence the nonrelativistic ideal radiation-hydro-

dynamic equations are:

224 Fe(od) =0, (16)
>
%E (pu +-l; F) + Vo + Voot + B) =0, (17)

c

%; C% pu2 + E_+ E) + 6-[(% pu2 + E_ + Pm)3 + ¥l =0 , (18)



which are supplemented by the thermodfnéhic'relaﬁionships

By = By (PsT) I : (19)
Ep = E_(p,T) , | " (20)
> e
and the definitions of E, F, and P as
E -‘% [ av [ ad1 ’ (21)
o . bm S

F = [ v [ addr , (22)
o b ~ .

-+ 1 o . ‘

P == fTdav [ adddr . ‘ (23)
Co 4y .

Thus, the dinclusion of radiation in the fluid equations has
introduced one new dependent variable, namely I(;,v,ﬁ,t). We need
derive an equation (a conservation equation for photons) which
yields I. We do this shortly.

If I is independent of 5, it is said to be isoirogic- If 1t
1s independent of both * and 5, it is said to be homogeneous and

isotropic. The most important example of a homogeneous and
isotroplc radiation field is that which coexists with matter in
complete thermodynamic equilibrium at temperature T. In this
case, I is the Planck function B(v,T) given by

3
I = B = 222_. (ehv/kT - 1)-1 , (24)
c
where k is the Boltzmann constante. The corresponding energy

density is



bl - 4
= Bk T f” dxx3 2 Bt S (48ﬂk T“) z
(o]

or

- 8ﬂ5k“. T

. (25)
15h3,3

This 1s often written

E = aT" |, (26)

where a, the radiation constant, i3 given by

Skh .
a w KT (27)
15h3¢3 :

or

4 :
E = EE T* (28)

where 0 = ac/4 1is called the Stefan-Boltzmann. constant. The
radiative flux and pressure tensor corresponding to a Planck

function are

> +
f=0; %= a§“ i, (29)



¥ : - . N .
where lf is the unit (diagonal) tensor. We mnote the general
~relationsh;p, for any I, ‘ o

e .
Te(P) = E . - | (30)

We also note that for streaming fadiation (leee, all photons

going in one direction, say the z direction),
P = E '; (31)

EY
&>
and all other eight components of P are zero.

De Interaction O0f The Radiation Field With Matter
We consider three interactions of photons with nmatter:
(1) absorption; (2) scattering; (3) birth in the matter.

l. Absorption. We define the macroscopic absorption coefficient,

or cross section,

o, = o, (T,v,t) , | | (32)

such that the probability of a photon being absorbed in a

distance ds is

prob. of abs. = aads R (33)

In writing Eq. (32) we have assumed no angular dependence for o,
(1.e., the matter i1is isotropic -~ has no preferred direction).

Thie 41is always true except in crystals (of no importance in



'radiation-hydrodynamics), for; ifﬁﬂene‘;considers relativistie

" effects, which can be important.. We consider relativistie

10

effects later on{} The function Oa° is often decomposed as
+ ‘ -r.
O’a(;',\’,t) = p(r,t) K(r,v,t) ’ (34)

where K 1s the mass absorption coefficient, or opacity. Another
decomposition is

o (F,v,t) = N(Z,¢) u(z,v,t) ' (35)

where N is the atomic density and Ba 18 the microscopic

absorption coefficient.

2. Scattering. Similarly, we define the scattering coefficient

or cross section

¢ = os(;,v,t) . | ' (36)

such that, in a distance of travel ds,

prob. of scatt. = dsds . ‘ (37)

As with absorption, og 1is independent of ﬁ (except'for relativi-

stic effects). In a scattering event a pho;on does not disappear
as in absorption, but continues to exist with another direction
of travel and frequency, in general. That is, scattering changes
a photon's characteristics from Vv' and 3! to V and R. We describe
this by introducing the differential scattering coefficient or
the differential scattering cross cs(v'+v,§~5') such that the

PRI
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probabilit  of a pﬁotoh béing scattered from V' to.V contained in
dv, and f: - g to & contained in dﬁ, 1n'tfaveiing a distance ds

is given

prob = cs(v'+y,§'o§)dvd§ds . | (38)

Note the argument 5'°5 rather than Q' and i separately. That/is,
the scattering depends upon the scattering angle only, not @' and
% separately. This is a consequence of the assumption of iso-~
tropic matters We also note the identity between the scattering

cross section Og(v') and the differential scattering cross

gection as(v'*v,ﬁoﬁ')

os(v') = Im dv f dﬁos(v'+v,§'~§) s (39)
o b
or
. 1
os(v') = 27 f dv f du os(v'+v,u) . (40)
(o] - S

>+
Often one decomposes os(v'+V,Q'°9) as
os(v'+v,5'°§) = os(v!) K(v'+v,§'-§) , (41)
where K is the normalized scattering distribution, i.e.;

g" av [ af kevrav,Brel) = 1 (42)
ha

If

R(u'»v, 81 ef) = K(Hred) S(v'-v) (43)

11

R
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where

f ad k(BB - 1 , - ‘ (44)
bo - -

the scattering is called coherent or conservative. If

K(v'+v,5'-§) = %? K(v'sv) , ~ (45)
where

[T dv K(v'av) = 1 , (46)

o

the scattering 1s called isotropic. The simplest Scattering
distribution is both coherent and isotropic, i.e.,

R(vr v, B0 ell) = 2= s(v1-v) o

and is widely used in radiation-hydrodynamic calculations.

Total Cross Section = Mean Free Path

We define the total interaction coefficient or total cross

gection o as

o = o, + o, _ (48)

The symbol o generally denotes the probability of scattering
given that a collision has occurxred, i.e.;

S el A (49)



T

;‘u 0 1sfa“put¢ly;LébSOibihg 'probigm{"faﬁd w=141s a purely

gcattering one.
We ask the question: If a photon of frequency V. 1s traveling

in a’homogeneous medium (no ;<énd t depéndences)‘of ‘total cross.

gsection o(v), how far, on the average, will this photon streanm

before suffering a collision? : This distance is called the mean

free path and dénoted by A = A(Vv).

ds
Ny —— o
: 1
N(s)
» S
s=0
We have
dN(collided) = -Nods , 7 (50)

frdm the definition of the total cross section 0. Hence

dN '
T No (51)

or

N = Noe-.os ° ‘ . (52)

That is, Np photoné initially in a beam will be exponentially
reduced to N photons in the beam after traveling a distance s.

The number of photons that collide in a path length element ds at
g is then given by

|an| = 8 e Pods . (53)

13




‘Tﬁisf'nunber'iof photonsA h£§é .traveled .a distance 8 bhefore. .
Hsuffering a- collision and hence the average distance s, or A, to
a collision is just s averaged over 'dN! i.e., o

, £ s(ﬁoe-dsads) ) _

g8 = )\ = = - — [ Yt (54)
T (N e 0ds) o’

o

6r, displaying, the frequency argument,

A(Y) =‘%>- . - (55)

That is, the average distance a photon travels between°collisions

is just the inverse of the total cross section (in a homogeneous

medium).

3. Birth. Consider the emission of photons. Since neither

absorption nor scattering creates photons, how are photons intro-
duced into a system? One way this can be accomplished is by
shining light into the matter through its bounding surface. We
discuss this shortly.

The other possibility 4is that photons are born in the

matter, through the process of spontaneous emission. That is,
all materials spontaneously emit photons characteristic of the

state of the matter. We quantify this source by introducing

q = Q(;:Vat) ’ | (56)

such that the number of photons emitted per unit time and volume
at frequency Vv in dv and direction 9 in 40 is given by

photons emitted = q(;,v,t)dvdﬁ . (57)

14




This source of ‘pﬁdfohs‘ié taken to be indépendent of §, which

again followsifrom‘the aésumption ofxisotropic matters

II. THE EQUATION OF TRANSFER

We derive an equation satisfied by I(;,v,ﬁ,t), the equation
of radiative transfer. This is just a conservation equation for

photonse.

.
»

A. Assumptions and Limitations

In order to obtain a relatively simple kinetic (transport)
équation'we need to approximate the underlying physics of radi-
ation processes. These approximations fall into two classes -
those that are inherent in any kinetic equation description of
radiation energy transport, and those that can be incorporated
into such an equation at the expenses of simplicity. It should
be emphasized that the question of the dinherent validity of a
kinetic equation for photons is by no means settled, but is still

being actively researched.

Inherent Limitations

l. Photon density is large, so that fluctuations caused by
individual photon dynamics can be ignored - it suffices to deal
with averages, as 1is inherent in characterizing the  photon
distribution in a statistical way with a single particle distri-

bution functione.

2, The wave packet we call a photon is small, in both
physical and momentum space. That is, the spreads in these vari-

ables must be small compaied to the resolution of interest in

15



’space (r) and momentum (represented by v ‘and #). This is clearly
required since we assume in writing I as a function of r, v, and
i} that it 1is sufficient to specify the phase space coordinates of
"the "center" pf the,wave packet, and that any information con-
cerning the disttibution-about the center is irrelevants. Becausge

of the uncertainty principle, which limits the wave packet spread
in r and p, these considerations impose a minimum on the spatial

and nomentum resolution possible in the equation of transfer.

3. Intetference ieffeets are ignored, since the transport
equation is hnAequation.fdr intensities rather than wave ampli-
tudes. Hence, the photon density must be low; i.e., low enough
so that the overlap in the tails of the wave packets is
negligibly small. This ‘restriction is somewhat too strong since,
given a time resolution of interest, photons of sufficiently
different frequencies do ‘not interfere even if they coincide
spatially. This fact is needed to be able to treat the source

photons as incoherent.

4. Collisions occur instantaneously, and spontaneous
emission occurs instantaneously. This imposes a minimum on the

time resolution that a kinetic equation can supply.

5. No diffraction or Teflection 1is possible. These
phenomena depend upon interference among the waves arising from
different scattering centers, which scatter the same photon. For
interference of this type to occur, two conditions must be
satisfied. First, the scattering centers must be correlated (as
in a crystal) and secondly, the spatial extent of the wave packet
must be such that several scattering centers are encompassed by a

single photone.

16



 Simplifying Assumptions.

1. ‘?olarizéﬁion igvnegléctéd. Four parameters are required
to specify the state of polarization of a beam of light. Further,
the state of polarization and hence these four parametars change
when a photon is scatteréd. A proper description of vadiative
transfer involves four'coﬁﬁled transport equations. The single
'equation ve deél with can be considered as the vrasult of
averaging this set of four eqhationé over polarization states,
assuning the light to be natural (unpolarized). The fact that -
four parametegé. are needed 1is - easily demonstrated. They are:
(a) the intensity; (b) the prpportioh of unpolarized light and
elliptically polarized .light, a decomposition that Jis always
possible and 1is unique; (c) the plane of polarization of the
ellipse (its orientation in space); (d) the ellipticity (the

ratio of the axes)e.

2. Refraction and dispersion 1is neglecteds That is, the
refractive index is taken as unity. If this index 1s mnot unity,
photons will not move at the vacuum speed of light. In addition,
if this index depends upon space, photons will not stream din
straight lines between collisions but will undergo (continuous)
refraction. In addition, if the index depends wupon time, a
photon will (continuously) change 1its frequency as it streams
between collisions (dispersion). The origin of these effects is
interference between the scattered wave (from a single scattering

center) in the near forward direction and the incident wave.

3. The medium is assumed isotropic. That is, in the fluid

rest frame there 1is no preferential direction in the matter.
Hence, a4(v), og(v), and B(v,T) do not depend on 5, and
os(v'+v,ﬁ’-§) depends only upon 3'-3, not 5' and 5 separately.

4., Moving medium effects are neglected. The fact that the

fluid 4is moving does, ¢to an observer at rest, introduce a

17



, préfefféd' &ifehﬁidﬁ’ iﬁ the mafteru Then oa, Og, and B depend

. ‘upon & and the. differential. scattering cross section depends upon

§' and & separately. These are relativistic effects, -of the order
of u/c. , \ ‘ |

These four effects can be, and have been, incorporated into

a kinetic description of radiative transfer. With the possible

exception of v/c terms, they are generally unimportant.

B. An Eulerian Derivation of the Equation of Radiative Transfer

We write -

>

dr = dxdydz |, (57)
df = 5inB dO d¢ = dpds (58)

and consider a six-dimensional "cube" 4V fixed in space such that
the nunber of photons in this cube at time t is

# of photons = f£(r,v,8,t)drdddv = £4v . (59)

The time rate of change of the number of photons in this cube is
given by

3 Y '
change = Ty (£4dV) (dv) Tl | (60)

We equate this change to the time rate of change of sources and
sinks, namely: streaming, absorption; outscattering, inscatter-
ing, and emission. We have, for each of these terms,

net streaming _ [3

out of cube (x£) + = (yf) + 2= (2f) + +— (Vf)

+AS G + 3 Go)lav (61)

i8

o 5 e it o e T
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-, P - B - x -

Cabsorption = o fdV , I UL (62)

-outscattering = cdV fg dv'! f<d§} 68(v+v',§'°§)f(v,3) ; (63)
o o - -

inscattering é cdv [T dv!
' ° by

emission = qdV . o (65)

Thus, the conservation (photon balance) equation is:

3f§\é!§) + c§.$f(v,§) = q(v) - cca(\))f(\),ﬁ)

+ [Tave | dﬁ'[as(v'»v,ﬁoﬁ')f(v',ﬁ') - os(v+v',§-5')f(v,§)],(66)
o 4y '

where we have neglected refraction and dispersion, i.e., set

Ve=pa=§=0 , | | (67)
and set

[ ) L [ ]

X = cﬂx; y = cﬂy; 2 = cnz . (68)

1f we rewrite’Eq. (66) in terms of

I(v,f) = chve(v, ) , (69)
defining
S(v) = hvq(v) , (70)

19
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we have

1 ﬁlﬁﬁ;él + §;§I(v,§) + g (v)I(v;ﬁ) = §(v) + fm dv' f ad"
c at 7 a o hn

[%T oé(v'+v,§f-§)1(v',§') - as(v+v',§-5')1(v,5)] . (71)

Using’

o _(v) = gf:év' {ﬂ dﬁ"os(v+v',§o§') , (72)
and
, o =g +oao, |, (73)

we can rewrite Eq. (71) as:

% El%gLﬁl + ReVI(v, ) + o(v)I(v,B) = s(v)

# [T avt [ oal oo (v, Bedniee, i L (74
o 4

Cr» A Lagrangian Derivation of the Equation of Radiative Transfer

As a packet of photons travels in matter, its number would -

be conserved except for the processes of absorption, scattering,
and emissione. We have just computed these three processes, and

we can immediately write

d
I (fav) qdV coade cosde

+ cav [ dv' [ a% o (viav,RroyE(vr, B L (75)
o b
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'Here, d/dt is ‘the total, or Lagrangian, time derivative, taken
along fhg natural bath of the stréaming packet of phofons. That
is; the term d(£fdV)/dt means thé difference between. the value of
-£dV at s +. ds and its value at s (where ds = cdt is én elemeht of
length along the photon path) divided by the transit tipe dt.
This difference in value comes, in general, from both an explicit
timé dependence of fdV and an implicit time dgpendenee through

the other variables involved.
It should also be stressed that dV here 4s not fixed 4in

space, but travels along with the packet of photonse. Its size
varies in time. in just such a way that at any instant of time it

encompasses the photons of interest. Hence,
4 (dv) # O (76)
dt ’

but the change in dV with time must be calculated.
The rule for diffecentiating a product gives (at this point
it 1is convenient to use AV rather that dV, and let AV+dV as

appropriate in the manipulations)

%? (fAV) = (f AxAyAzAvAuAd) = AxAyAzAvAuA¢

n1m

+ £ AyAzAvAuA¢ (Ax) + five similar terms , (77)

or, introducing AV,

d ds
ax (FAV) = AV g

1 d 1 1
+ £AV[5= o= (8x) +Ty--—(A y) + 4 dt (Az) + o & &)] .+ (78)

Considering Ax = x5 - x;, we have
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hence, Eq. (78) becomes

d_ - av 4£ + &

T (£8v) = AV ¢ + fAv[a y teo o] (80)

Using the chaip rule of differentiation on the df/dt term in
Eq. (80) then yields:

d of e Jf s 3f
-a-?(fAV)HAV[—a—-'i'X'é';'Fy—;'P...]
' ax ., 3y .

or, combining the terms on the right hand side of Eg. (81),

d_
dt

of 3

(gavy = avlEE 4+ &) 4 %— (F€) + o o o] . (82)

Using this result in Eqe. (75) and cancelling the common 4V term

gives

AE(V, ) a(£f> . 3(YE)

o o+ = q(v) - cof

at ax y
+o [Tav [ dfr o (viev,RreByecen, i (83)
o 'S &

Taking into account that photons stream in straight lines and
introducing I = chvf, Eq. (83) becomes




.F

L algz,ﬁ) £ BFL(v, B) F o(WI,E) = §(v)

+ [Tavr [ afr o5 os<v4+u,§-§')1<v'.§') ,  (84)
0 45 .

which is "jdentical to the Eulerian derivation result [see
qu (74)].

D. Boundary and Initial Conditions

Since the ‘equation of transfer is a first order differential
equation in space and tiﬁe, we require boundary conditions in
both variables.

We assume that the system of interest, which is arbitrary in
composition and shape, is non-reentrant, by which we mean that
any photon that escapes through the surface will neot re-anter the
system through another part of the surface. If the body is
re~entrant, we enclose it in a non-reentrant hypothetical surface
(sucﬁ as a spherical shell) and consider the system to be bounded
by the imposed, rather than the real, surface. The new system is
then non-reentfant, but consists in part, of vacuum (o = § = 0).

On physical grounds, we Kknow it is suffiéient to specify
the specific intensity at each surface point in the incoming

direction. Thus we have the boundary condition

I(;B,V,ﬁ,t) = r(;s’\’:sﬁst)’ ;°§ <0, (85)

&>
where I is a specified function of all arguments, rg is a surface
point, and 3 is an outward normal vector at this point.
A special case of Eqe. (85) 1is the so-called vacuum or free

surface boundary condition.

(7, ,v,8,t) = 0, nel <0, (85a)
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which merely states ;hatfnb‘pﬁdiOné enter the system through its
bounding surface. N D
The initial condition is, with A a known function of ail

arguments,

1(Z,v,8,0) = AE,v,T) S (86)

E« The Equation of Transfer in Vafious Geometries

To write pﬁe equation of transfer in any given coordinate
system, we need interpret §+VI as a directional derivative in the
8 direction.

Slab (Planar Geometry)

24
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* In this geometry, I is a function 'only’ of 2 end u;-}ehe

cosine of the angle between the z axis and Q. We have

8T 31 (dzy . 31 ,duy o |
s rw @t E - (87)

From the fugure weé see

] 0
mie
L
o

= cos® = pj . (88)

R
®BiN

and the equation of traesfer, Eq. (84), becomes

% Elégeﬂl + q EE%ELHL + o(V)I(v,n) = S(v)

+ % avr [ aft e oo (vrav,BedIeenuty o (89)
. 0 LY 8

To simplify the scattering term, we expand os(v'*v,§~§’) in

Legendre polynomials according to

os(v'*vyﬁ'-ﬁ) = nza (Eﬂ—i—l) csn(v'+v)Pn(§-§') R (90)
where
1
Oga(V'7V) = 2w [ 4B o (1, EDP (E) (91)
We use

p_(fef') = 2 (WE_(n*)

n
{n - m)! . m m, . o A
+ 2 mzl m Pn(u) Pn(u )COS m(¢ ¢ ) . (92)
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Using hq. (92) in Eq..(90), and\this\result in Eq- (89) gives,
noting that the cosine m (¢ - ¢ ) terms integrate to zero,

__1_ 3I(v,u)

La1nw , i.zg_ﬁ + -o<‘{,>1_<:v,i.>' = $(v)

+ 20 (zﬂii—l)P ku) f dv! %T o (V'sv)
nl’

1 .
'I1 du' B_(u)I(v,u') . (93)

Spherically Symmetric Geometry

In this geometry, I depends upon the radial coordinate r and
u, the cosine of the angle between r and . We have

81 _ 31 (dry , (dIy (d

35 " ) ) &) o (34)
and

dr 6wy . du 1 -w? :

35 ~ cosb® = u 3 ds r  ° (35)

(Note that du/ds # O since O is not measured with respect to an
axis fixed in space).
The scattering term can be treated Just as in planar

geometry, and hence we have

1 31(v,u) +‘u 3T(v,p) | (1 - u?) 3I(v,u)
c ot ar b R

+ o(V)I(v,n) = S(V) + 20 (2222 e ()
n.

[ avt Lo (v'av) I aw P (uOI(v,u') o (96)
o 8n -1
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YUCylindrically Symmetric Geometry

In ‘this geometry, T depends upon the single spatial coordi*'

nate (the usual cylindrical coordinate), but two angles de-
_ fining § are needed.‘rmhese may be taken as 0, the anglo between
the -projection of 2 in the ®-y plane and the cylindric¢al coordi-

nate re. Then

91

LR BARe . o
Qne findo |

%§ = sind cos¢ %% = - % sin® sin¢ ; %g =0 , (98)
and hence the transport eouation is

%.izi%tngl + sin6[cos¢ %% - % sin¢ %%] + o(v)I(v,8,¢)

= S(v) + [T avt [ alt 3 o (viav, BRIV, 00,90) o (99)
o bn

In this case no simplification in the scattering term is possible

since the angular dependence of I 1is as general as in the

original equation of transfer (i.e., two angles are required).

3-D Geometries

In general 3-D geometry, we have:

Cartesian
31 _ , 2l 31 31
98 Oy 3x * ny 2y + 8 57 (100)
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with

“~

| nf{ +‘iz}2': +n§=1 | ,"5 B o . (Ipi)"
égﬁérical<
whér; r, 0, ¢ are the usual spherical spatial coordinates,
u = cosei‘:n = sin® cos¢; £ = sinb sin¢ , (103)
wi;h |
w2+ n2 + E2 =1 \ | | (104)

Here 6 is the polar angle betwen r and 5, and ¢ is the azimuthal
angle between the projection of ) in the plane perpendicular to r

and any reference axis in this plane.

Cylindrical
21 _ 31, n 3l 3l _n3I
35 "M triottiaz T e A (105)

where r, ©, and z are the usual cylindrical spatial cooxdinates,

£ = cos8; p = sinb cos¢; n = sin6 sing , (106)

with

Here © 18 the polar 'angle between the axis and 5, and ¢ is an

azimuthal angle between r and the projection of ? in the X-y

plane.
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F. The Integral Form of the Equation of- Transfer

We fifstféoﬁsider fhe,tihégiﬁéébendeﬁt equation of transfer.
We have, f1">07m ‘Ed; (84),' ) R . .

BA1CE, v, B) + o(F,vIEvh = o b (108)
where Q(;,v,ﬁ) is the tdtai;(emis$ion'+ sgattering) source
Q(E,v,8) = s(&,v)

+ fm dv'! ] dﬁ'-%7.og(;,v'+v,3-3'51(;,v',5') . (109)
o b

The boundary condition on Eq.'(108) is

1(%8,\:,5) - r(%s,v,ﬁ) , neR <0 . (110)

We interpret %V as a directional derivative in the direction 5,
N ,
and introduce the distance s from the point r d1in the -8

direction.
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”\We write Eq.'(IOB)ZQt the -point r = s§ s, supéreésing the

,frequency variable

- BI(r - 85 ﬁ)

+ o(r‘- sﬁ)I(r'- 88, 5) = QY = s®,8) . (111)

This 1s a first order\'gqﬁation‘_that"can "be integrated by
introducing an integrating factor. The result is:

I(; - sﬁ,ﬁ) = I(; - soﬁ)exp[gs ds"o(; - s"aj]
. : o

8

+ g ® ds1q(¥ - s'§,§)exp[£f ds"a(r - s"%)] , (112)

where 8, 1s an ‘arbitrary point along s. Setting s = (0 in
Eq. (112) gives

, s .
I(;,ﬁ) » I(; - soﬁ)exp[- £ ° ds“o(; - 5"5)]

8 ‘ '
+ [ ° ds'Q(; - s'ﬁ,ﬁ)eXp[- fs ds"o (T - s“§)] o (113)
o

o
To apply the bouﬁdary condition, we choose 84 muéh that
> +> > + -
r - s 8 =7 =) 8, ™ 'r - rsl . (114)
.Then

I(; - so§,§$

= Nz, . (115)

+ &
So" r-rs
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3
r=Ig]

I(F,B) = I(T, n)exp[ [ ds" o(F - s"2)]
’ (o]

+
r-tsl g

+ f ds'Q(; - s'ﬁ;ﬁ)exp[- gs ds"o(; - 8"5)] » (116)
o . ,

which 1is the..integral form of the eqdation of transfer. We
see according'ﬁo Eqe (116) that~1(;,§) is the sum of two terms:
(1) the dintensity - incident wupon the surface exponentially
attenuated by collisions along the path; and (2) a contribution
due to emission and scattering into the beam from each path
‘length element ds' along 5, also exponentially attenuated.

The quantity

> >
r~rg

g ds"o(z - s"8) , (117)

T(r,;a)

thch occurs in Eq. (116) is referred to as the optical depth or

optical path léngth between the points ¥ and ;8. It is clear from
Eq. (116) that it is the optical depth between two points that is
the relevant quantity 1in calculating the exponential attenuation

of a beam of photons in traveling from one point to another.
One could repeat this derivation in the time dependent
. casee Omitting the details, the result is:

+ +
- '
8

f
I(r,R,t) = [£ de'Q(zr - s'8,8,t - s'/¢) .

8'
.exp[- f ds"O(; - 8"5,t - 8"/C)] +
o)
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.exp[- g : ds"o(; - s"ﬁ,tr-‘S"/C)]

+ A(T - ctﬁ,ﬁ)ﬂ(l? -‘;sl - ct) .
4“ .exp[- JCt ds“a(g - s"ﬁ,t - s"/C)] s (118)
where H(z) is the Heaviside function
H(z) = ' - .

This equation, the so-called formal solution of the eqhation of

transfer, is algebraically quite complex, but the physical
interpretation is simple; namely, photons of direction 3, vhich
are at a point ¥ at time ¢t must have originated at sone point
¥ - 58 at time t - s/c, due to . the finite speed of light. One
must also account for the exponential attenuation, based upon the
optical depth between r and £ - s8. This is the entire content
of Eq. (118).

G. Peierl's Equation

We consider the special case of time independent radiative

transfer with d1sotropic scattering and no incideant photons
(P = 0)e 1In this case Eq. (116) becomes

I(;,E) = feo ds'Q(; —‘s'ﬂﬁ) exp['- fs ds"c‘!(-:.t - s"ﬁ)] « (119)
o 0
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‘Ih"writiné; Eq. (119), we have used:the fact that Q(;,a) is, in
fact;,~iﬁ§ependent of ) begause'the‘ emission and scattering (by
assunption) are isotropic. We have further taken the upper 1imit
.of’integration 8s @ since Q is zero for g > '; - ;s"

Integrating Eq. (119) over all &, recalling that the radi-
ative energy density is givén by

B =2 [ afid,h (120)

b

.

[the functionhﬁ in Eq. (120) is really the energy density per
unit frequency since no integral over v 13»involved}, we obtain

the result

CE(T) = f af gw ds'Q(r - E'ﬁ)exp[- fs ds"o(r - 8"5)] «(121)
bn o

We define
' o=t -5t (122)

and hence

|

g! = ,; -] . (123)

Then Eqe (121) becones

cE(F) = [ af [ dlt - Trlezn .
b o

+ &,
r-r '

.exp[~ J ds"o(; - s"ﬁ)] . (124)
(e}

Recognizing the exponent 1in Eq. (124) as the optical depth

+ &>
T(r,r') and grouping terms, we have
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ii:c£2§;;sf‘i dlr - r',lr - r'lz f d§[ Q(r') e-T(;’;')].(IZS)
B ¢ 2 r-r '2

We now recognize that lr - r'lzdlr - r"dﬁ is just 4 Vvolupe ele-

ment. in spherical coordinates, centered around the polnt ». One

can rewtite this volume element as simply dr' without reference

to .any particular coordinate system. Hence Eqe« (125) can be
rewritten '
: . ' d
cE(E) = [ afr _QED  ~T(F,TY) , (126)

.V t-r'lz

where the integration extends over the volume of the system.
The function Q(r) in:Eq. (126) is given by

) = vy = scE,v) 4 [T avt 53 o, (F,v 1 ev)eE(R, v |, (127)

and hence Eq. (126) becones

cE(;,V) =
+* o v > > -r(; ;')
4n[S(r',V) + [ dvt o os(r',v‘+v)cE(r',V')]e d
[ ar? : 0 : . (128)
v ~ 4ni§-§'l2

Equation (128) is an integral equation for E(;,v) and is known as
Pelerls' equation. We have introduced a factor of 4m in both the
numerator and denominator of Eqe (128) to aid in the physical
interpretation of this result. The term 4n Q(?') is just the
angle integrated total (emission plus scattering) source at a
point ¥'. To obtain the contribution of this source to cE(i)
one must attenuate it by the proﬁer exponential, namely e-T(r T
which 1is the noncollision probability. One must also introduce

;
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v‘the geometric attenuation due to spherical divergence,r amely the'

area of the spherical shell at point r with ‘center r . This 1s
“just 4w|r - rlz the denominator in Eq. (128).
'If one considers Peierls' equation in the standard threei

one~dimensional geometries, one finds from Eq- (126):

Planar'Geometgy

eB(z) = 2n [* a2t Ey([7 - vt])aGzn) (129)
where ' :
© e 2t 1 n-2 =-z/t i
E (z) = [ -dt = [ dt t e (130)
n 1 D o <

is the standard nth order exponential integral, and

t(z) = fz dz"o(z") . (131)

o

The slab here extends over the range 0 2z { R, and 0 = 0(z), an
arbitrary function of space.
For spherical and cylindrical systems, one obtains rela-

tively simple results only for homogeneous systems (a cross

section o independent of space). These results are:

Sgherical

cE(r) = 27 JR dz’ %L [El(clr-r'l] - El(o'r+r'|)]§(r') «(132)

Cylindrical

R [ R | 1 @
cE(r) = 4ro g dr'r'Q(z') { don(or<y)Ko(or>y) . (133)
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oonost o

" where Ig(z) and Ko(z) are Eﬁé'ﬁéﬁéizﬁéégél functions, and
= min (r,r') ,

Te

ry = max (£,£') . t (134)

H. Induced Processes and Local Thérmodyhhmic Equilibrium

The equation qf transfer considered thus far may properly be
termed the classical equation of transfer since its dexivation
was based solely on classical physics conceptse. We now'modify

this equation to account for so-called induced processes, a

non—-classical concepte.

Specifically, we consider the manifestation in the equation
of transfer of the quantum statistics obeyed by photons. Since
photons are bosons, both the processes of emission and scattering
are enhanced by the number of photons already in the final state
following the interaction. This enhancement 1s generally
referred to as resulting from induced processes. The quanti-
titive statement of this enhanéement is simply stated as: If P
represents the basic rate of a photon event (emission or

scattering) then, due to induced effects; the actual rate P' is

given by

P' = P(l + n) , (135)
‘where n is the number of photons in the final state of the
transitione. In the present context, the final state corresponds
to the basic, or unit cell, of phase space. In terms of the

distribution function f(;,v,ﬁ,t) introduced earlier, the number
of photons at time t in a unit cell of ;,v,ﬁ space is given by

no= [ dr [ av [ 4R £(F,v,8,t) (136)
A .
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,6h Sy

_:q";» ““z dp - (h/c)3v2dvd5 3 (138) .
! i , Introducing the specific“iniensi;y I i{éﬁvfﬁin;Eqp:(13§)'§nd‘
fl making use of Eq- (138), we; obtain A;“ﬂiﬁ-{ﬂ ,”;mﬂaif;_i~, S .

P ) 2 . ) ) 5 ‘: *. 7; t o R ; R o . - |
on =S fariflap 1, v Beye3 . (139)
- cht A B O u .

T

>

wﬁere A now denotes the basic cell in r, p space- This basic ele->
‘ment 18 ’ '

A= ,_AKA':’-_,- nd/2 , (140)
with the factor of 2 arising because each b3 of phase space can

accommodate two photons, ope~of each polarization state. Hence
Eq..(139) yields o ‘7}‘7?‘ﬂﬂ)n"f‘ |

PRI S o (i41>‘
E L AT o o ] Jl ’

“end:thusu" |
P' = P[1+ c21/2mv3]) . ¢ | | (142)

i
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1- _ ‘q,ere 5the 'frequency‘ and_ angle arguments of‘ the
>_specific intensityfcorrespon“

the emission - 0T scattering process has occurred.1, :uith

this\
change, thc clasaical equation of transfer, Eq-.(71). bntomes
1 _.__.Hg: "5) +, a 'v’uv 5) = s(v)[x + --—-—-L-—° 1s §’] - (v)uv 5)
_ J: PR . JZnu3_ ,
‘,ﬂ-p-?jf”;a\}iv!{'f;-i.;]&ﬁ’v‘,_‘g? a (e, 5 6'>1(v' §'>[1 + €2109, By I“’ 3 ]
f’»Qijw‘dv‘fJ dﬁ' o (v+v' n°5')I(V §)[1 ; < I(v' 5')] . (143)¢
| L0 uy L 2h
Equati-n (143) ‘the 4equation of radiatiV‘X transfer'

‘including the effects of induced processes. It can be -seen that

induced scattering severely complicates the equation of transfer"

in~ that it leade to nonlinear terms, quadratic in the intensity.f

It should be noted that if the scattering is coherent, i.e.,

*'oégu'+v,§o§5)'i 65(543'15(9,- u?) R S c f”(i44)‘
then the induced inscattering and outscattering ‘terms identicalLy

cancel one. another,»and the equation of transfer ‘again 'becomes
linear.' The induced contribution to emission ‘remains, hOWever,f
fbutl this term is always linear in- character., As. will. be
.discussed later, these -induced, scattering terms are necessary in .
the equation of transfer for the scattering operator to. give the .
correct equilibrium distribution, namely a Planck function. ~The
'neglect of dnduced processes leads to the Wien, rather than the
Planck. function as the equilibrium distribution for the specifiec

intensity. A final note of interest concerning induced processes

38

woithe state of the photon aften‘

.

s . PO
L0 L Al s

PPVt

— 2% =

PER AP S

pevenay oo =

P s AT TR 4 N




;“is that they result from a physical principle closely connected
'with the Pauli exclusion principle. The Pauli principle reduces
the probability of fermion events by the factor 1 -.n, and hence
“1f the specific intensity described fermions the appropriate
factors in Eq. (143) would be 1 = c21/2hv3.
Another item of interest to consider here is the toncept of
local thermodynamic ‘equilibrium (LTE). With reference to
-Eqe (143), the source term S represents the source of photons

due to spontaneous emission from atoms, and the cross sections
Oa and O0g determine the interaction of Photons with the
matter. . In general, these three quantities depend upon the

~microscopic ‘description of the atoums that compose the matter,
i.e., the population of the various states of the atoms, and

there 1s no simple relationship between the three quantities. A
sinplifying assumption in this regard often invoked in vradiation-
hydrodynamic work is the LTE assumption. It 1is assumed that the
properties of the wmatter are dominated by atomic collisions,
‘which establish thermodynamic equilibrium at position r and time
t, and that the radiation field, even if it deviates substantial-
ly from the equilibrium Planck disttibution,.does not affect this
equilibriume. That 1s, at a given instant of time and point in
space it suffices to specify, in addition to the atomic compo-
sition, two thermodynamic quantities much as temperature and
density in order to compute the source term S, absorption coeffi-
cient Oa, and scattering coefficient Og Equilibrium
statistical mechanics, together with quantum mechanics, can then
in principle be used to compute S, 0,4, and Oge In particular,
the Saha and Boltzmann laws, appropriate to thermodynamic
equilibrium, can be used to determine the reiative abundance of

the fonic species and the population of the states within a given
ionic species. The LTE assumption also 1leads to a simple

relationship between S and Oa» a8 we now show.

As 1t stands, Eqe. (143) 1is not restricted to LTE situations,
but describes a more general class of problems. To see the
effect of the LTE assumption on the equation of transfer, it is
convenient to eliminate S and Oq in Eqe (143) in favor of B and

o4, defined by the relationships
39



o, = al(l + ¢2B/2nv3) . P o ' (146)

At this point, B is not to be interpreted as the Planagk functon,
but 1s merely a new variable defined in terms of 0q and S
according to Egs. (145) and (146). 1In terms of B angd cl,
Eqe (143) is written

% azgszq)_+ 31 = HOIIOE I(v,8)]

+ I°° av' | dadr %i‘ g (v'+v, &. 5")1(\). g D1+ c I(\)}ﬁ)]
o 4 . B 2hv3

= [T avt [ oaliv o (vave, Belinyzce,By[1 + 1O LD D ESP
0 by ‘ 2hv!3

For simplicity, we take g5 ‘= 0 in Eq. (147), although the
argument we are about to make can &lso be made with scattering
included, using the detailed balence relationship to be discussed
later.

Now, in complete thermodynamic equilibrium, the radiation
field 1is independent of space and time and hence, 1in this
situation with the neglect of scattering, Eq. (147) reads

ol (v)[B(v) - I(v,)] =0 . (148)

It 18 well known that in complete thermodynamic equilibrium, the
equation of transfer must give the Planck black body distribution
for the specific intensity 1I. For this to be the case, it is
clear from Eqe. (148) that B must be the Planck function as welle
Since the LTE assumption states that the radiation field does not

affect the properties of the matter, 1in particular the source
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' fﬁnction:B we conclude that under the LTE simplification, B is
the Planck function no matter ‘what the radiation field is. That
is, under LTE we haVe

N 3 - 7 .
B(v) = ZBYZ (GhV/KT _ 5o | (149)
(3 .

where T is the local temperature of the matter. Further,
Eqe (149) in Eq. (146) gives

use of

a;(u) = oa(v)(l ~Ae-hvlkT) . (150)

Here o04(v) is the absorption coefficient appropriate to thermo-
dynamic equilibrium and the exponential factor is the effective
decrease in the absorption coefficient due to stimulated
emnission. :

The form of Eq. (147), involving emission and absorption in
the form oJ(B ~ 1), is the conventional way of writing the trang-
port equation in radiative transfer, even if the LTE assunption
is not invoked (in which case B is not the Planck function).
However, the LTE assumption is generally made in vradiation
hydrodynamic work because of the vast simplification it
introduces; namely thermodynamics can be used to describe the
matters. In the absence of the LTE assumption, rate equations
involving radiative and collisional transitions for the various
lonic species and related energy levels for the atom must be
solved simultaneously vith the equation of transfer.

" I.  Black Body -~ Enissivity

We introduce the concept of a black body and the emissivity
of a grey (non-black) body. We assume the scattering 1is
coherent, in which case the quadratic induced scattering terms

drop out, and we have as the equation of transfer in the steady
state limit
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L RFE D o GBI, B - o v [B0n,D - TR, E)]

S alt o (v, Eedn1cd, v, 8 . (151)
L X '

We envision a convex body of arbitrary shape, whose character-
istic size L and characteristic radius of curvature R is 1large
compared to llag. Then 1locally, near any surface point, this
body can be treated as a semi-infinite halfspace, and the

equation of transfer becomes

" 3I(;;V,U) + US(Z,V)I(Z,V)p) = o;(z,v)[B(V,T) - I(R,V,u)]

+ f ad' o (z,v,ﬁoﬁ')I(z,v,u') , (152)
bhg 8

where z 1s a coordinate perpendicular to the surface.

A black body 1s a large (Lod >> 1, Rog >> 1) purely
absorbing system, i.e., o5 = 0.

We compute the radiative flux leaving the surface of a black

body with a constant temperature. The equation to be solved is
Eq. (152) with o5 = 0 and B constant in space, l.e.,

9 ' .
w DM Ly - rw, 0gtcw (153)

with boundary conditions
I(O,u) =0 u>> 0 |, (154)
I(2,u) < ® (155)

Here we have suppressed the frequency variable and introduced the

optical depth
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o= [P Azt etz .o (156)
I A a ‘ S : -
The solution to this'pfoblem is

I(t,u) = B(1-e /"y | u>o ,
I(T,p) = B <o . (157)

The flux leaving the surface is defined as

. ©
Fouyp = 27 f: du|u] g dv I(0,u) , (158)

and we find

Fout = oTh (159)

where 0 is the Stefan-Boltzman constants

If this halfspace had a scattering component (og * 0), the
outscattering flux would be smaller (we prove this shortly) and
€, the emissivity, defined as

FOu’t:
€ = ol S (160)
(o]

1s less than unity (and obviously greater than zZero).
We now define, and proie, Kirchoff's law. We consider two
halfspace problems, each with the same absorption and scattering

cross sectionse.

Problem #1 - A constant temperature halfspace with a vacuum

boundary condition. The transport problem is then

a1
" EEL t oty mo(B-1)+ [ dﬁ'os(ﬁrﬁ')xl(u') , (161)
by
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with béqndar§ condigions?iw
11(0.V.u) = 0o, ﬁ >‘0 ).
Ip(=,vyp) < = p<0 (162)

The emissivity is given by

2n fo dUIH' gw dvII(O,V,u) i
e = -1 . (163)
, OT!* ' .

Problem #2 - A zero temperature halfspace with a Planckian

boundary condition. This transport problem is

-

H ;;3 + 0812 s - 0;12 + {ﬂ dﬁ'os(§°§')12(u') ’ (164)
w;th boundary conditions

IZ(O,v,u) = B p>0 ,

Iz(w,v,u) { » u<o , (165)

and the probability of absorption is

F - F F
p = in = out _ ; . Fout , (166)
in in

or

2n f: du|u| gm dvi, (0,v,¥)

p =1~
27 fl dup Im dVvB ’
[s} o]

(167)
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or

27 ]o du'u’ im'dvIZ(O,v,u)
- 1 - ~ -
p=1- . : (168)
oT! :

A comparison of these two problems shows that
Iz(zs"su) =B - Il(z’\’su) s (169)
and using this in Eq. (168) shows

€ = p 7 (170)
This 4s Kirchoff's Law. The emissivity of a non-black body is
equal to the probability of absorption of an incident Planck
distribution. Since it is clear that 0 L p £ 1, it then follows

that
0<e<1 . (171)

That 1s, no body at a constant temperature can radiate more than
a black body.

We can also define frequency dependent emissivities €y and
absorption probabilities Py as

27 f: du,u,Il(O,v,u)

2
YT w panp s L ebinesw
-1

and

2
Py = 1 - = {? dufuj1,¢0,v,u) . (173)

The same analysis just performed immediately shows that

(174)
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and hence

Je Transport (Steady State) im a Vacuum

0< €y £1 .

In this case, the transport equation is simply

5. 91(F,v,80) =0

or
2% = 0 =>» I = constant .
That 1is,

any ray is a constant.

Lambert's Law

Define the directional flux at z = 0 as

46

Consider black body radiation from a surface:

Black

/.
Bod \\\h
BENAN

zn(

F(O,u) = g” dvpI(0,v,u) .

ol

in a vacuum the specific intensity of radiation

()

(175)

(176)

(177)

along

(178)




But I€0,v,u) is just B [see Eq. (157)]. ‘Hence

N ' .
“cos® LA ‘ (179)

FO,u) = [° avus = 2=
o . o

This is a Lambert's Law. The total flux radiated by the black
body is then

F(0) = 27 g‘ duF(0, 1) = oT% , (180)

a result we've seen befored

View Factors ,
Consider two differential areas dA; and dA, separated by a

distance T,,, each radiating as a black body.

In this picture 2 is a vector normal to dA, and 8 is the angle
between % and the line separating dA; and dAze. Let dQ72 be the
radiative energy, per unit time, leaving dA;, which stikes dAj.

We have, by Lambert's law)

qu
aQgy = (= cosel)dAldﬁ , (181)
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where’dﬁ 1s the solid ghgié ?:éppésehtgdibiﬁ'the'dotted lines in
the figure. Using R '

(dA,) : ,
r? '
12

where (dAz)J.is the projection of dAz on a plane perpendicular to
the line connecting dA; and dAz, we have

(da,) |

Tl’
Qg3 = (2;_ cose1)dA1 5 s (183)
o ri,
But
(dAz)l.' cosesz2 . (184)

Thus we have

(¢]
aazt = (=) | Jah da, o . (185)

Similarly, the radiation from dA, which strikes dA; is

OTZ cose1 c0592 v
dQzt = (— - Jaa da, . (186)
T2

The net flux from dA; to dA is then

cos® cose2

1

2
Ti2

dq,, = dag3 - 40z = 2 (14 - 13) dAjdA, . (187)

1f one considers radiative transfer between two bodies of finite

area, say A) and Ay, we then have for the net energy transferred,
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. , 7 ’ 7—~6 . i ., ’ - - -
Q,, == (1% - T3 ) ;{ dA, { da, ( ) (188)
) 1 ‘ 2 = Tt 12 ’

"

where the integration is over all dA; and dA2, which "see" each -
other.

This result is conventionally written

- b . ph :
Q, = AyFyp o(T] 3) (189)
or
- 4 - b
Q,, = A Fy o1} T3) (190)
where
cos0. cosf
_ 1 1 2
F,.= —-—“A1£ dA, £ da, - . (191)
1 2 12
0. cos®
.1 cos¥, 2
FZI = TA-;‘{ dA'l f dAZ ( r2 ) . (192)
1 12
The Fj3, and. F21 are dimensionless view factors = also called

shape factors or configuration factors. The physical interpreta=
tion is that Fi12 gives the fraction of radiative energy emitted
by body 1, which is intercepted by body 2. We nunote the symmetry
reiation

AYF L, = A, (193)

and the inequality

0 < Fyp»

N
—
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-bodies need not
be "straight"

In the above' picture, n = 8. Since they form a complete

enclosure, we -have

121 Fgg =1 oo ‘ (195)

Let Q3 be the net radiative energy from body i per unit time.
Then

n N
Q = A0 r; - 321 Ajo TgFji . _ (196)
Using
Aiji - AiFij , » (197)

this becomnes

n
Q = Aio[T: - 121 FijTg] ; (198)

Equation (198) represents n equations for 2n "unknowns”, Ty and

Qi+ Hence n of these unknowns must be specified, and the other

n can be solved for. VWe note that any specification or sclution,

however, must satisfy
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rvi‘):l" Q= 0 o PR (199)

"This follows from summing Eq.- (196) .gver ail i, making use of

"Eqe (195).
Three common uses ¢f Eq. (198) are:

l. Compute Heat Fluxes

All the T§ are given, and the Q1 are évaluated fronm
Eq. (198);

2., One Driving Temperature

One of the T3y, say T), is specified, and all ﬁalls except
wall f#1 are specified as insulated (Q = 0, i # 1). Equation
(198) 1s used to soive for Q; and Ty, 41 # 1. We obviously
find, in view of Eq. (199),

Q, =0 . (200)

Since the equations are linear in T“, we will also obtain
T} = K, T} (201)

i i

where Xy, 1 # 1, depends upon all of the Fy4 and the Aj.

3. Heat Transfer Between Two Surfaces

We sgpecify T; and Tp, and all walls except 1! and 2 are
specified as insulated. Equation (198) is used to solve for Q
and Q2 and Ty, 4 # 1,2, 1In view of Eq. (199) we find

Q2 = -Q1 | (202)
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‘and’
- oA,F, (TY -
Q = oA F Ty = T

where F12 depends upon all of the Fij and the Aj.

Non-Black Bodies

This problem is more difficult than black bodies because of

multiple reflection of radiation. To demonstrate this,

two infinite slaps.

T . T

We have

Filo = Fyy =1

If the bodies were both black, then we would have

q,, = net flux (per unit area) from body 1 to body 2

= - b
ot - 13) .

Consider now grey bodies, with emissivities €] and €j.

the picture:
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tonsider

- (204)

(205)

We have
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In drawing this. picture,,we have used Kirchoff's law, which says
the probability of bsorption i’?iequl to ‘the emissivity.

Accounting for the"absorption in wall 2 on each pass, W¥e have:

a7y = fiux (per unit area) ‘absorbed by body 2 due to
emission from body 1 _

= " ' - - o
oT [e €, elez(l el)(l uz)
- 2 - 2
+ 5152(1 el) (1 ez)
- - 3¢(1 = 3
+ 8192(1 el) (1 32) + ...]

€ €2 ]

™ (1= RISE A (206)

Similarly,

152 -
azt = 973 [1-(1-e1)(1-52)] : (207)

Hence the net flux (per unit area) passing from body 1 to body 2,
q12, 1is

e E
a,, = a3 - a1 = (7} - T;)[l—(l—e )(1 5 )] (208)

Let us consider an enclosure of n bodies just as before, except

now the bodles are grey rather than b;ack. Define

qI s flux (per unit area) leaving the ith surface.

qI = flux (per unit area) impinging upon the 1th surface.
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We have the. statement that the energy impinging upon the ith
surface is the 'sum of - the contributions from all of the surfaces,

ioeo’

n -
Ajqy = jzl Aijiqj . (209)
Using
AiFij = Aiji ’ (210)
this becomes
n .
- +
a; = 1 Fyyay o (211)
j=1
Now, we have
twe 0T + (1 - £,)q, (212)
93 1?1 Ti 93 o <
enmitted reflected
and hence Eq. (211) becomes
= F € T + (1 -
or, rewriting,
- n _ n Y
- F 1 - = F,, e, oT . 214
ag = b Fag€l - ey bFey®yT (214)
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We can- obtain an alternate form of this result in terms of the

Q4, defined as the 'net energy transfet from body i per unit
time. We have

Qi it Ai\qi = qi> ]

(215)
and using Eq. {212) for qI, this becones
Q = Ayle 0Td - e,q7] (216)
or
: Q
- 4 i
q, = oT] - . (217)
i i eiAi

Using this result in Eq. (214), we obtain as
of the black body result:

the generalization

f eiAi
Q, - F,.(1 - ¢) Q
i jo1 13 j EjAy
= eiAio[T: - z FyyT j] . (218)

Just as in the black body case, one can easily
Eqe (218) implies

show that
) Q =0 . : S (219)

We note that 1if all bodies are black (ey = 1), then Eq. (218)
reduces to our previous result, Eq. (198).
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. If we c§nsﬁder'twd’ﬁﬁfihitéjplaneé; we have
Fip =Fyy =13 F  =F, =0 . , (220)
If we set A} = Ap = 1, then we have,
where q,, and 9,, are the notation previously used in discussing
the two parallel plane problem. Setting i = 1 in Eq. (218) then

gives

€

- - 1 = b o b
9 = (1~ €)) e, Y21 e, o(T} - 13) . (222)

But from Eqs. (219) and (221), we have
qu i q12 ) (223)
and Eq. (222) then yields

£

a,,[1 + (L =€) Ei] = e o(Td - T4) (224)

which, when solved for q9;,s 8lves

- b o b
q12 G(TI TZ)[EI - 8182 4+ € ] ¢ (225)

This 1s the same result [see Eq. (208)], which we obtained by
sunmming over an infinite number of reflections.

Just in the black body case, Eq. (218) represents n
equations in 2n unknowns, Ty and Q4. Thus n of these
unknowns can be specified and the remaining n solved for, with
Eq. (219) being one result of the solution (any specification
must not violate this condition).
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K Relativistic Radiation Hydrodynamics

C I the fluid speed u.is an. appreciable fraction of the speed
of light cc it is necessary to formulate the equation of radi-
ation hydrodynamics relativistically. These "u/e correetions
are important in many astrophysical applications and marginally
important in nuclear weapons effects calculations. As we shall
discuss later, there 1is one important case where, although u/e
may formally be very small, it may be necessary to carry u/e
terms to obtain the correct equations of radiation hydrodynamics.

We begin our discussion by considering the Lorentsz trans-
formation of the equation of transfer. We consider this equation
as seen by an observer in an inertial frame of reference. We’®
call this the %ero frame and subscript all quantities with a
zero. The equation of transfer is, rewriting Eq. (143) with zero

subscripts,

3T (v ,& ) :
% 5 32 — + §O.$olo(vo’§o)
o
e21 (v ,8 )
o' 0’0o ~ _
= [1+ — 18, Cogafi) =0, (v, 8 )1 (v, )
0
c21 (v ,8 )
@ ' ' o' o’
+ £ d“é Jﬂ dﬁ; 08°(v°+v , '+§ ) I (v 3’)[1 + Zhvg

‘ c21 (\,"ﬁl)
- ({ av! {,, aft! 0 o (Vorvlsit ﬁo)lo(vo,ﬁo)[l + WE ] +(226)

Equation (226) is a slight generalization of Eq. (143) in that
the source S and absorption coefficient are allowed an O de~
pendence and the scattering kernel Og can depend upon 8 and '

separately. The same generalization of Eq. (147) is
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aI (v ,5 )

a: + 3 61 (v
) o

nlt-

fs )."::i\',?ﬁ}w {~i“:~“.??;f;i:t~; -

01, (v &) [B (v 38y - IOK}’Q»_%"'], S

© ‘ " ZIo(“o’ﬁo)
+ [ avy {ﬂ_d5$,°so(?$’“o’§'*§ ) —: 1 (v' LB n —
» : _ > 0
- [Z av' | dﬁ;-o (v !, +§ )I (v § )[ 21 e °)] (227)i
° ° i o so‘o ZhV;a *

In both Eqs. (226) and (227) we have not expliéitly written the ;
and t arguments of all quantities; but these dependences .are
understood. ‘ ’

We'now consider a second inertial frame of reference moving
w;th velocity 3 with respect to the zero frame. In this second
frame we leave all quantities unédorne&. Hence to an observer in
this frame, Eq.r(226) or Eq. (227) is the equation of transfer,
with all zero subscripts dropped. By demaﬂding that the equation
of transfer be invariaﬁt under a Lorentz transformation, we can
relate all of the components in the equations in the two frames.
Omitting the details, the results are:

If we define '

A= (1= v2/e2)71 2 | (228)
D=1+ fiev/ie , | - (229)
D' = 1 + Q'ev/c , (230)

then we have the ftransformations:
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e (231)

<'23? )

(?35)

(230)

~Ip<vo.5;5;*‘§i§>?l{§;§);'51‘,t;",‘ @)
so(vo,5°)~;‘(£9)2§C?;#5m“;;5ﬂ ;.i" ~:_ o ‘  (236)
°ao("o’.§o) -~“—,1r3 aa‘(\},iﬁt)" oo | B (237)
'B°<vo.5°')l'-",(Al?)éB("v.jﬁl)v . : R | | (238)
c;o(vo,ﬁé) - -}5;&;(‘5,5)"" P | | (239)
aso<vo+“;:‘5a*5;>f"ﬁ%'j ‘38("%?'#5*5'? I C L
duodﬁo - -i—D-:dvdﬁ | - | (241)

. We now use‘;hése résults té-accoun;'for relativistic effects
in the equation of tfaﬁgféry- It was pointed out earlier that
there 1is no preferred ‘direction in the fluid for radiation
hydrodynamic ‘problems. Héncé ~Og, O3, S, and B, which describe
the absorption and sodrcé of photons' should be independent of 3,

the flight direction of a photon. Further, 0og the scattering

60



.'1‘cosine

f“;qkérnérg“

‘Eqe (143), should be written ,;ﬂ

*f.'\
o

the.~scattering angl&,‘ Whose

W
PR

, the directions ki and 3'-Sepa-l =N
,’fratelyc \'fﬁ3in radiation hyddeYnamic .

,”problems the fluid 13 1n general in motion changes the situation..‘
,The fluid is still isotropic, but, as seen by an inertial frame

’fobserver, this motion does introduce a preferred directieh in the

matter, namely the direction of motion of the- fluid““” This in ‘
turn, in tﬁe relativistict_limit; introduces an 5 depenﬁence in :
g, o a? Sy and B,‘and separate 5 and 5' dependences in c . E

a ,
Taking this ‘into,-account, Ethé: equation"of_ transfer,‘

n'lo-o

-———'-—”§Z 3 4*‘§.m‘1v',5‘>ﬁfr seu, i1 + 22D v B,y
) T R T e 2hV3;’” 8 - T S

T e

+ I'r&“‘ I,'dﬁ'f%f_b((v'+v §'+§)I(v' gy[1 + E_lgﬁgﬁ)]\
o 5“ .- tﬁns N 2hv3 -

C[mav [ el o e B Ton B+ SIOLED gy

o 'S ) . S - 2hv'
and Eq. (147) betomes
%'3$§§L§l7+7§-$1(9,3);lgo;(r,ﬁi[r(v,ﬁ) - (v, 1)

+ fu dv' [ ad 2773:(v'+§,§'4ﬁ)1(v' gyl + E_I(Vga)]
° hw o vl~ ° ' , 2hv3

o™ avt [ afiv o (vevt BT, D1 + 21,8y | (243)
° - 4% 8 N 1 2hv '3 '
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g relative motion betﬂeen the fluid and the observer.; Rnnce ‘Wwe _can
: iuse the Lorentz transformation results just presented o compute

these dependences. This is argued as follows._ \
wexconsider an.- observer in’- an, inertial frame of reference
' observing%radiative*transfer in a moving £luide.. At a particular
'spaee point r and time t the fluid ‘has a*‘macroscopic velocity
3u(r,t) as . seen by this observer.' We call the frame of reference
10 which .the fluid is at rest the zero frame, and the frame of
‘»»the observer the unadorned frame.‘. The transformation Velocity b

'of the Lorentz transformation of Eqs. (228) through.(241);is then

VemomulE,e) e T (\2'44)
“Since ,the'(observer 'is in -an dinertial frame ‘of reference,
'Eq. (242) or- Eq.‘(243) is the appropriate transport equation. We
assume the source functions S and B, the absorption coeffieients
aé'and c' and ‘the’ scattering kernel o, are known in the»zero
frame. (the fluid rest frame), ‘and use the Lorentz transformation
results to obtain these functions in the unadorned frame..

f It must be noted that the zero frame, defined .as the frame
for which the fluid is .at rest, is not in general an inertial
frame since the fluid velocity 1s ‘a function of both space and
timee. Hence Eq. (226) or " (227), valid only in an inertial frame,
is not a proper description of radiative transfer in the f£luid
rest frame. More to the Doint, the fact that the fluid rest
frame 'is ‘not',} inertial “frame implies that the. Lorentz
'transformation between frames cannot be used. However, certain
of .. these transformations can be used in the present contexte
' That is, even though the fluid rest frame i1s not an inertial
frame, one can envision an inertial frame that instantaneously,
at time t and space- point r, coincides with the fluid rest frame.

Since the source -terme (by source terms here we mean all terms
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ﬂexcept/\‘ghe ‘ streaming terms,‘i i.e.,‘ffthe ’ emission source;
| bsorption, and scattering terms) in the equation of traﬁsfer are
well defined at a single time t and Space point T (Le2s, t and r‘ 
are only parameters in the source terms, no operatOts involving

_time or space appear in these terms), the Lorentz transformation;

can indeed by used to relate the source terms in the fluid restAirlj

frame to those in the unadorned (observer) frame. The streaming
terms, on the other hand, involve derivatives with respect to
space and time. To define these derivatives via a Lofentz
transformation the fluid rest frame must be an inertial frame for
an arbitrarily small, but nonzexo, interval of space und time.
Since, in'geﬁeral, such an interval does not exist for & fluid in
non-uniform motion, the ' Lorentz transformation is not valid for
the streaming terms. Fortunately, we need concern ourselves here
only with the source terms since we wish to write the equation of
transfer in the unadorned frame and in this frame, since it 1is
inertial, the streaming terms are already knowne

We first consider ehe terms S, B, LA and o;. Since the
£luid is isotropic, all of these functions are independent of Iy
and hence depend only upon frequency in the fluid rest (zero)
frames. From Eqse. (228), (229), (231), (236), and (244) we obtain

S(v,8) = =y s, (v.) (245)
where

v, © AEV , (246)

A= (1 - u2/e2) M2 | (247)

E = 1~ 8en/c (248)

For u/e << i, it is sensible to expand S(v,ﬁ) in powers of u/ce
Correct to first order, we find

63




S o s, <v) | |

Similarly, from Eqs. (237), (238);faﬁdf(239) we obtaln

B(v,ﬁ) = (AE)szo(vo)h ’ o | (250)
o (v, ) = (ABdo (V) » | (251)
o1(v, ) = (AE)o! (V) » ‘ (252)

which, correct to the first order, gives

> g dBo(v)
B(v,f1) = B (V) + (8L)[38,(v) - v —5—1 (253)
.l: 80( )
o (v, ) = 0, (¥} - (&e2) [0, (v) + v ——-3;-] , (254)
* (v)
ol (v, 8) = ol (v) - (Q-—)[o' (v) + v ——%%—-—] . (255)

In addition, from Eq. (240) we can deduce the scattering kernal

in the unadorned frame. We have
E X ’
] Y oy — ' !
oB(v+v ,§+§ ) 5 oso(vo+vo,§° ﬁo) ’ (256)
where E is given by Eq. (248) and

E' = 1 = f'eu/c (257)
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'In writing Eq.-(256) we have explicitly shown that in the ‘zero
frdame. the cattering kernel depends only_ upon the‘ scattering
angle. . For small u/c; Eq. (256) yields '

°s(v+v'.§+5') = o (vavt, Beat)

dd

> d
- (Rel) [o, v 22+ (1 - el e
. c 80 a(3e g
> . dO
- (FeE) [, ke (1 - f.80) d(ﬂ'Q')] . (258)

As a concrete example of putting these considarations
together, we consider the simple case of an equation of transfer,
neglecting induced effects, in which the scattering is grey (the

scattering cross section is independent of frequency), isotropic

and coherent, - ise.,

(+)
>, :
o o(v;+vo,§-§') = 22 8(v: = V) . (259)

&>
In the absence of u/c terms, the equation of transfer in the

inertial (unadorned) frame would be written

% 32%%:21 + fe¥1(v,8) + [056(¥) * OSO]I(v,ﬁ)

o

=5 (v) + 22 | adri(v,any (260)
by
or, introducing,
CE(vy =2 ) abe,in o, (261)

b
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7UEq.(260) can be written. .. |

e}

1210v,8) , Be9100,8) + [o,_(v) + o, 1100, B

o \
-vso(v) + 3%2 cE(v) .. (262)

With the inclusion of relativistic terms, correct to order 3/c,
Eq. (260) becomes

v

%.gl§§1§l + ReV1(v,8) + [oao(vi + aso]I(v,ﬁ)

; .
- so(v).+ io {ﬂdﬁ'l(v,ﬁ')

%
Y doao(v) .
+ (ﬁo;)[oao(v) to v 11V, %)
> ds (v)
+ [50%)[286(v)1- v —5—]
¢ +
-2 dﬁ'(ﬁ'-%)[lcv,ﬁv) - v 31$§6§l~]
by
o a 3I(v h
t g (Be8) [ afr[21(v,8r) - v S LS N (263) |
by
or, using Eq. (261) and introducing {
Fv) = [ afedr 1(v,81) , (264)
4y
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, ‘ ' o,
. = 8 (v) + 2 cE(v) + (5-—][o~ (v) o, + v 11(v, &)
> ds (vV) o_. > 2
+ (u.z)[zs (v) - —%\7—] - 4: [“’?(") - %g-%]
c L
+ 722 (Be8)[2¢E(v) - ev al‘:“’)] .  (265)

-

[The dE/3v and 35/3v terms arise from integrating by parts to

eliminate derivatives of delta functions that arise from using
Eqe (259) 1in Eq. (258)] We note the complexity that “has been
introduced Sy retaining terms of order u/c.

We now turn to the question of relative hydrodynamies. The
relativistic hydrodynamic equations in the absence of a radiation
field are given in many texts on relativity and fluid mechanics.
The approach universably used to derive these equations is to
employ the energy-momentum tensore. This tensor 1is obtsined by
arguing that it must have a certain form to undergo the proper
Lorentz transformation and to reduce to the correct diagonal
tensor for a fluid at rest. In cur discussion of the rela-
tivistic hydrodynamic equations including radiative contributions
we use kine;ic theory arguments rather than an energy-momentum
tensor containing radiation terms. This avoids the use of the
transformation properties of tensors and seems to be a more basic
starting point. In particuiar, our discussion emphasizes the
assumption needed to obtai.n a hydrodynamic description of the
motion of an ideal fluid. Further, the concept of fluid pressure
enters naturally.

We consider a fluid composed of oarticles of rest mass mg
having various momenta p and described microscopically at time t

by a distribution function per unit volume and per unit momentum
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;.‘w(r, ,p). 'F’ ; simplicity, k drop a11 agéﬁméﬁﬁs 4 and “t and
‘simply denote this distribution function by w(p) Thus the number
of particles at  time t 1n “a . differential volume element‘dr
ce1tered at r and in a differential” momentum element dg centered
at p is given by w(p)drdp. The macroscopic veloclty of the fluid
is 'denoted by 3; 1.e;, if v denotes the velocity of a particle
with momentum ;, then '

_ L dp v ()
/ dp W(p)

(266)

That is, the ‘fluid velocity u is just the velocity of the indi-
vidual particles that make up the fluid averaged over the distri-
bution function.

We introduce a second frame of referende, namely the frame
moving with the fluid. We refer to this as the fluid rest frame
and subseript all quantities in this frame of reference with a
zeroe. In particular, we denote by ¢°($°) the particle distribu-
tion function in the rest frame, with ;o denoting the momentum in
this frame. It is important to note that the fluid rest frame is
not in general an inertial frame of reference since the fluid can
undergo accelerations 'at any point in space and time.

The basic assumption that leads to ideal fluid hydrodynamics
18 that the momentum dependence of the distribution function is
isotroplc in the fluid rest frame. That is, wo(so) depends upon
only the magnitude of the momentum, and not its direction.

In the fluid rest frame, we define three macroscopic quanti-

ties Ny, Eto, and Ppg by the equations
*> + :
Noo= [ ap ¥ (p)) (267)

+ * .
E = / dp E ¥, (p,) (268)
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Pm;}§[ffa§;($o}§)<365§5}0<;;) N (269)

Here E, 1is energy, including the rest energy, asociatod with a
particle of momentum po, and v° is the velocity assoclatud with a°
particle of momentunm po. ~The vector- n is an arbitrary wunit

vector = since wo(go) is isotropic by assumption, P, does not
depend upon the choice of n. The physical interpretation of N5
and E¢, 1is immediate. No 1is Jjust the particle density and
Evo 13 the total energy density, both in the fluid rest frame.
From its definition, Pp, is just the rate of transfer of the
momentum component parallel to n across a surface of wunit area
whose normal- direction 18 1. This quantity is convanticnally
called the material pressure, again defined in the £luiqg rest
frame.

We now define the six quantities needed to derive the
hydrodynamic equations, namely the number, momentum, and energy
densities and fluxes, all in the unadorned, or observer frame

(which 18 an inertial frame). We have

Number

= [ ap w3 , (270)
Density
Momentum
= [ dp b v , (271)
Density ‘
Energy '
= [ dp E wp) (272)
Density : :
Number
o = [ & v , (273)
ux .
Momentum
o = [4ap v p wp) |, (274)
ux
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[ ap ¥ Eib(357@f;€: S R * (275)

We evaluate these six integ:élé'by changing variabies from ; to
';o’ i.e., we perform the integratiodé‘in the fluid rest frame.
The results are that these six quantities in the observer frame
can be expressed in terms of the three quantities in the fluid
rest frame given by Egs. (267) through (269), in addition to the
fluid velocity u and the relativistic factor

’ .

Az - u2fe2y M2 (276)

We sketch the details for Eq. (270), and merely quote thea other
five results. We have o ’

N = [dp w(p) - (277)

To evaluate this integrai, we change variables of integration
from ; to ;o, the rest frame momentume. Since ; and iEB/c form a
four vector, they ¢transform according to the wusual Lorentz

transformation. The result is

(3+p )C(A-1) AE
+ -+ [0 [« R he
p=p, + [ = t la (278)

+ +
E = A(Eo + quo) K (279)

The variable ; and E are not independent, but are related by

EZ = p2¢2 + mgc“ , . (280)
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if;hiﬁh 1#1?éiﬁiiéf}-:elatibnéhip{ivéiiﬁ?ﬁin:{;ﬂé'féé#o frame. -Fr;m‘
‘Eqsa,(278)‘thfdugh (280) one'ééﬁ'éompute the Jacoblan between

N , : L+
;;Vand ;o that relates the differen;iﬁlsidg‘and dpo+ The result is

| . o . |
dp = = dp_ | ~ (281)

Futher, it 1s well known that the distribution function is a

Lorentz invariant, i.e.,

VB = v (B) . | (282)

Using Eqs. (281) and (282) in Eq. (277) gives

N o= [ dp, A[L + (@3 )/EJv (B (283)

where we have used Eq. (279) for the ratio E/Ege Since wo(so) is
isotropic (or, more generaliy, by definition of the fluid rest
frame), the term involving ;o in Eq. (283) has a zero dintegral
and hence, recalling Eq. (267),

N o= AN_ . (284)

In deriving this result, we have used the Lorentz transformation
to transform to the fluid rest frame. As we noted earlier,
however, the fluid rest frame is not an inertial frame. Never-
theless, the‘Loréntz transformation can properly be used, as we
argued 1in connection with our discussion of the equation of
transfer. A

Similar manipulations allow us to evaluate the other five
integrals defined by Eqs. (271) through (275). We find, including

Eq. (284), the six results in the unadorned (observer) frame:

Number density = ANO , ~ (285)
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M o D TUE TR LA e o B ; :
Momeptum dgnsiﬁy_ ::; gEtoi%f?mO)u +-:; ’ - (286)
N ; 2 Py - .
Egergy density A ‘Eto’+ Pmo) ,Pmo + E , " (287)
. . ° + . .
Number flux_é AN(} R (288)
;oo i
Monentun flux = Pmo + :; (Eto.+ Pmo)uu + s (289)
= A2 4 :
Energy flux A <Eto + Pmo)u + § N (290)

In writing Eqs. (285) through (290), we have included the radi~
ative contributions ghere E (the radiation energy density) f (the
radiative flux) and P (the radiation pressure tensor) are defined
by Eqse. (21) through (23).

With these results, it is straightforward to derive the
Eulerian equations of £luid dynamics, including effects of a
radiation field. We let D(;,t) represent the density of the
quantity under . consideration (particle number, momentum, or
energy) and let f(;,t) denote the corresponding flux. The con-
servation equation is simply

Dy tF-o | (291)

(If an external source 4is present, the rhs of this equation would
not be zero.) Applying Eq. (291) to the three conserved quanti-
ties, namely particle number, momentum, and energy, we obtain,‘
using Eqs. (285) through (290) for the relevant densities and
fluxes,

3 (AN ) .
*‘ifg‘ + 6.(ANO§) -0 , (292)
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3 - - ' + F 1 %50 0
5T [——2- (E,, + B )0 +—;] f*-$Pmo‘_
N 5 . C‘_
- A2 ’ . e 3 | 7
o+ Ve[ (e, + R duu+P]l=0 , (293)

C‘
3 . CIA2E 4p 2
3¢ [A%E, +B_ ) - P+ E] + ﬁo[AZ(Eto+Pmo)u + F] = 0 .(294)

~ Equations (292) through (294) are ‘the Eulerian form  of the
relativistic.ideal fluid equations.

- We canApﬁt these equations in a somewhat more useful form by
redefining some of the variables. In particular, we eliminate

NQ in these equations in favor of py, defined as
p =mN_ . | (295)

The quantity p, 1is just the rest frame density. We also define

Eno as

E, ™ Eo ™ p°c2 . ' (296)

so that Ep, 1is the fluid energy density (in the £luid rest
frame) 1in excess of the rest energy. Then Egs. (292) through
{294) become: ’

3a(Ap ) S
a,‘:o + $0(Apoﬁ) = 0 |, (297)
2
%; A (p e2 +E_ +P )T + E—J + ¥p_
o2 o mo o2 mo
AZ 2 > >
+ V-[—— (p c® +E + P duu + ?] =0 , (298)
2 (o} mo mo’
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S X [Ajgeosn;#agmbf7?mo)j‘
- \> e . . - - ! c- - ] ‘ ‘

‘+*$.[A2(_pbc2 + Emo + Pmo)u + i-k] E,O . , (299)

An alternate form of the energy equation follows by multiplying
‘Eq. (297) by c? and subtracting the result from Eqe (299), This
has the effect of deleting the particle rest energy contribution
from the energy equation and makes the passage to the nonrela-
tivistic limit easier. Hence an equivalent set of ‘relativistic
hydrodynamic, equations, our final fornm for the Eulerian dquation,
is:

3 (Ap )
[s) >
—5p— + Veao B) = 0, | (300)
2
-g~[-‘5—(pc2+z +P){I+f—]+§1’
t c2 (o] mo mo c2 no
PR b2 s 4 )it 4 3] = 0 301
o2 Po mo no ’ ‘ ( )
9 - 2 2 -
5T [ACA Dpye? + A%(E  + P ) P+ E]
+ Ve[ACA = 1)p c28 + A2(E__ + P ) + 3] =0 . (302)
2] mo mo

In the 1limit 3/c+0, Eqs. (300) through (302) reduce to the non-
relativistic equations, Eqs. (16) through (18).
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III.. APPROXIMATE MODELS OF RADIATIVE TRANSFER

tThe"équétiqn of fradiaéivé' tranéfgr is obviously quite

" complex; the specifiec intensity, which is the dependent variable

in this equation, depends ’in‘ general -upon seven ' independent

‘variables (;,v,ﬁ,t). Even in the simplest physically interesting

situation of time and frequency independent transport in plane
geometry (then only 'two independent wvariables 2z aad u are
idvolved), one can obtain analytic solutions in only a very small
number of limiting cases. Hence in general one must approximate
the equation of- transfer, either analytically or numerically, in
order to obtain.a solutione. ‘

Most approximate descriptions of radiative transfer are 

based upon the integto-differential equation rather than the
integral gquation.—‘ The frequency and angle dependences of the
specific intensity, which give rise to the integral terms in this
equation, are generally approximated analytically. This leads to
a finite (ane hopefully small) number of coupled differential
equations in the space and time variables. These equations are
then conventionally solved numerically via more or less standard
finite difference techniques.

We discuss here a limited number of analytic approximatiocns
employed in frequency and angle. The methods we shall consider
certainly do not represent the totality of all methods that can,
and have, been used in radiation hydrodynamics calculations.
They are, however, the techniques most commonly used in practice.
The finite difference methods used in space and time will not Be
considered. Such techniques, especially with the advent of high
speed computers, can be very sophisticated and represent a
discipline within themselves. For simplicity of exposition, we
consider the simple case of an equation of transfer which
neglects induced effects, and involving scattering which is both

isotropic and coherent. The equation of transfer is then

21
55+ V1 + oI =

. .
= (o,b + o E) , (303)

O
=2
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where

B 4nﬁf .
- (304)

is the energy densi;y associated with the Planck distribution,
and E is the radiation field energy density '

E=2 [ 451(5)  . | (305)
Lo

Integration ' of Eqe (303) over all solid angle yields the
conservation equation

3= +‘$-§ = co (b - E) , ‘ (306)

where f is8 the radiation flux

F = [ afdzcd) . | (307)
i

A. The Eddington or Diffusion Approximation

For Eq. (306) to be useful, we need a second relationship
that gives F as a functional of E. The basic assumption under~-
lying the classical diffusion, or Eddington, description of
radiative transfer is that the angglar dependence of the specific
1ntenéity can be represented by the first two terms in a

spherical harmonic expansion. That is, it is assumed that

(k) = %; [cE + 38.F] . (308)

Use of Eq. (308) in Eq. (303), multiplication of the result by 5,

and the subsequent integration over & vyields
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Q

~:%t : +-%W$(E§)*+4of'¥foA>; ' o | 1 (309)
Equations (306) and (309) form a closed set of equations for E
. and fi 6f-the telegraphefs \form. They yield a finita speed of
propagation, but of value c/¥3, rather than the correct value c.
This apprcximatidn,is>often referred to as the P-1 approximation.

For these equations to reduce to a diffusion-like
description of radiative transfer, we must demand, to he
consistent with normal usage of the term diffusion, that Eq (309)
reduce to a ?iék'srlaw of diffusion, i.e.,

F = -DV(cE) , (310)

where D = D(;,v,t) is the local diffusion coefficient at fréquen-
cy Vo This 1s accomplished by neglecting the 3%]3: term in
Eq. (309), arguing that for the specific intensity of radiation
to be almost isotropic as assumed in writing Eq. {308), the
problem must be collision dominated, i.e.,

oF >>

O'v-o
mlw
ety

. ' ' ‘ (311)
OQur Fick's law of diffusion is then

* 1

Fa-= Y(cE) (312)

and use of Eq. (312) {in Eq. (306) gives the diffusion equation

3% - 6-%; Y(cE) = co (b - E) . (313)

Any diffusion equation such as Eq. (313) has an infinite speed of
propagation.
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diffusion descriptions ﬁit;h”yuiﬁitial ~ é_nd‘ ‘boundary <conditions.

' From the initial condition on the éqgaﬁipn of transfer, Eq. (86),

we compute

E(T,Vv,0) ='% S dﬁ‘A(;;v,ﬁ) , (314)
by ’

F(E,v,0) = [ afd a(z,v,R) . (315)

by '

These are the. appropriate initial conditions, with only Eq. (214)

required for the diffusion description.

The boundary conditions are not as‘straightforward‘to write

down. The structure of the P-~1 or diffusion equations requires a’

>
*e

single condition between cE and F at each boundary point ;s' It'

is clear that, because of 1its simple angular depaudence, the
Eddington representation of the specific intensity, Eq. (308),
cannot satisfy the integro-differential boundary cbndition,
Eq. (85), for an arbitrary incoming distribution I'. The best one
can do is demand that Eq. (85) be satisfied in an integral sense.
That is, we use Eq. (308) in Eq. (85), multiply the result by a
weight function w(ﬁ), and integrate over all incoming directions.
This gives

f aft w(B)[4= (cE + 3h:F) - r(d)] =0 , (316)
<0

where n is a unit outward normal vector at the surface point ;s.
Equation (316), once w(a) has been specified, is the required
boundary condition.

We consider two choices for w(ﬁ) that are commonly used in

practice. The first choice is

w(d) = ned , (317)
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which yields

Fen) -z AFE) - é df|RA|TE LD . (318)
« “ne8i<0 - .

This bouﬁdary condition, referred to as the Marshak dr Milne
condition, has the physical interpretation that tha normal

component of the incoming flux 1s the integral quantity conserved
in passing from the exact condition, Eq;‘(SS), to the integral
condition, Eq. (316). . The second choice leads to the so-called
Mark boundary condition. To obtain this boundary condition, we
represent ) by a polar angle ;] E'cos’l(p), measured with respect

to the normal 3, and a corresponding a;imuthal angle ¢. If we set

w(u,8) = 8Cu = u)) | (319)

and, in addition, choose ug = ~1/Y3, Eq. (316) gzives

Y3 . ' -
3 cE(E) - 5 AF(E) - 52” doT(z_,u = -1/¥3) . (320)

Equation (320) has the interpretation that the exact boundary
condition is satisfied at a single polar angle point, u = -1/Y3.
This particular angle is chosen because of considerations such as
the following. Consider time independent transport in a
homogeneous, purely absorbing, plénar system. According to the
equation of transfer, photons incident upon the surface will be
absorbed such that, at depth 2z from the surface, exp-(0gz/u)
represents the probability of survival for photons of polar angle
6 = cos'l(u). On the other hand, the Eddington P-1, or diffusion,

approximation gives exp-(V3 0g2z) as the survival probability for
all photonse. Hence, uz-- 1/3 can be considered as the average

angle associated with the Eddington approximation. Experience
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indicates - that ‘the ' Mirshak-Milne - condition, Ed. T (318), 1s -

- eems v . & - R

‘genéral;yiﬁoge AEéQréte;ﬁhénf;Hé’Maﬁk §o§dition, Eq. (320).
- In radiation hydrodynaﬁiés ppbblems, the quantities of
interest are the radiative energy, flux, and pressure teunsor.

" The equétions'diébdssed heré:give~§ and ?, and ? follows from

> - : > :
BE,e) =3 1B . ~ (321)

W]

Although fhe classical diffusion or Eddington approximation is
much simpler than the transport description from which it was
derived, 1t“sh§u1d  deécribe the energy flow due to radiative
proéesses in a'semi-quantitacive gense. This description will be
particularly accurate 1f the specific intensity of radiation 1is
almost isotropice Of course, the angular detail of the specific
intensity has been lost since the essence of the Eddington
approximation ig the simple angular dependence assumad in
Eq. (308).

B. Asymptotic Diffusion Theory

The critical assumption in reducing the equation of
transfer, Eq. (303), to the diffusion description, Eq. - (313), 1is
that the specific intensity of radiation 1is almost isotropic, as
expressed quantitatively by Eq. (308). This leads to a diffusion
coefficient D = 1/(30).

One would find other diffusion coefficients if other angular
distributions were assumed. We consider the effect of one gsuch
distribution here, namely the asymptotic angular distribution of
the equation of transfer. This time independent distribution is
+hat found deep within (a few mean free paths from all
boundaries) a source free (b = 0) homogeneous medium in which

photons of different frequencies diffuse independently (the

scattering 1is coherent)e.
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" The equation of ﬁranﬁfé}'fofiiﬁiﬁkproﬁlémvis} from Eq. (303)
g1 + 1 = 2= [ gk 1(hn (322)
‘ b .

where we have set 0 = 1 (we measure distance in units of the mean
free path) and defined

W= == . (323)
We look for a solution of the form

1¢F,8) = phek T |

(324)
where w(ﬁ) and K

are to be
Eq. (322) gives

determined. Use of

Bk + Dy = 2= [ afir y(hry
L3

(325)
which gives

p(lt) = 2 ,
(1l + ko)

(326)

where we have normalized the solution such that

[ af w(h) =1

bw

(327)
Use of Eq. (326) 1in Eq. (327) and performing the integration
glves the dispersion relationship for K = lil as
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e (326)

.We note that only the magnitude of ﬁ is‘détermined; it8 direction
is arbitrary. Thus an aéymptotic solution of Eqe. (325) is

.
w Kuer

4u(l + x&-ﬁ) ©

12,8y = . (329)

where 3 is an arbitrary unit vector. Since the equation bf
transfer is. linear, the general asymptotic solution is obtained
as an arbitrary superposition of these solutions for different 3,

io&o,

w exﬁ-%
4u(l + Eueil)

I(,8) = [ daf(u) . (330)

Integration of Eq. (330) over all ) gives the energy density E as

: + >
E(X) = %-.{ ad 1(F,8) = [ af s(@efurr (331)
T

where we have made use of Eq. (327), i.e.,

a8 @ =1 (332)
g § 4n(l + K:-ﬁ) A :

Applying the Laplacian operator to Eq. (331) we find

V2(¢E) - K2(¢E) = 0 . (333)

However, the conservation equation is, by integrating Eq. (322)

over &ll solid angle
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BEd s - ped m0 (336)
A compari;on of Eés. (33?5 and &334)‘implies |

F = -DV(cE) , a (335)
with

. IO;ZF . | (336)

[Note that 1n.writing Eq. (336) we have introduced o, which geans
the gradient in Eq. (335) is in real, not optical, spaee]. This
asymptotic diffusion coefficient has the limiting values

oD = 1 , w =0 ’

ob = 1/3 , © =1 ’

oD + —o @+ @ : (337
Tz , 7)

and varies monotonicaliy with ©

This result is used to formulate a diffusion-like approxima-
tion to the equation of transfer, Eq. (303), in the following
way. The zeroth angular moment of Eq. (303) is just

3% # VeF = co (b - E) . (338)

As stated earlier, we require an additional result relating F to

E for Eq. (338) to be useful. The assunption in asymptotic
diffusion theory is that Eqe. (335), derived under gquite re-~
strictive circumstances, is generally valid. We then have the

diffusion equation
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Bt “’?'_(‘UKZ_ )V(CE) ;"tc“"ai(“’i_‘ ‘E> g (339)

with © = og/0 and K given by

L

‘ + K :
1 = 5% zn(1 K) . , - (340)

Two variations of this result have been suggested.

Variation #1 ,
We rewrite ‘the equation of transfer as

3
% 3% + fVI + oI = %%3 E , (341)
where we have defined
Oab + UBE

Aside from the time dependence, Eq. (341) looks like the equation
ve anélyzed to obtain our asymptotic results. Thus suggests that

w, rather that ;, be used to compute the diffusion coefficient.

Variation #2 .
In this case, an attempt is made to account for the time

dependence by assuming

91

3(cE)
vy (343)

3t ’

.
41
.and the equation of transfer can then be written

PS
cow

e E , (344)

891 + o1 =

84



- N e s [ T

e‘)‘«‘,;“;

with v defined by.

1 3E- .
=F =]

3t

{o.b + 0 E -
a 5

0

. ’ (345)

E?

The parameter ® is then used to compute D according to

p =12 (346)
oK?2
with'
W okt K A |
1 = 57 sn (= ) (347)

The boundary cohdition on asymptotic diffusion theoxy can be
obtained by employing the Marshak-Milne philoéophy, namely
demanding that the asymptotic angular distribution give the
correct incoming flux. Omitting the details, the result is

; 1 > 1 » +
——— | ———— E(r - —n*f T
4K2 (1 - Kz)c (€5 =2 xg)

r(?s,ﬁ) , (348)

- al |n-B
a+h<0

where, &s before, ;s denotes a surface point and n is a unit out-
ward normal vector at the point ;B. In the two variations of
asymptotic diffusion theory just mentioned, one would replace ©
in Eq. (348) with either ® or ;, and use the corresponding value
of K. '

As W approaches unity (pure scattering, or effective pure
scattering) all aspects of asymptotic diffusion theory agree with
those of the Eddington approximation. irn particular, oD goes to
1/3, and the asymptotic boundary condition, Eq. (348), goes to
the Eddington condition, Eq. (318). For this reason, it 1s often
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said that the Eddington approximation is only strictly valid for
almost pure seattering problems.i This - statement is only true as
far as asymptotic solutions in' a source free medium are
concerned. = The accurate ‘statement coqcérning the Eddihgton
approximation is that it is only strictly Qaiid when the specific
intensity of radiation is almost isotropic, without regaed to the
amount of absorption present., Asymptotic diffusion theory is a
strictly proper description of radiative transfer when the
specific intensity ijg in a nearly asymptotic state, as {8 clear
from its derivatione ' ,

Finally, Wwe consider the pressure tensor, accovding to
asymptotic analysis. This 1is obtained by analysis similar to
that which led to Eq. (335) for the radiative flux. Omitting ché

details, the ij component of the pressutz tensor is given by

1 >
Pyy =% {,, dﬁninjxcn)
u 36D - 1y _8Z2E 1 = oDy,
( ZKZ),( 2 ) ax iaxj + ( 2 )E —1_1 d (349)

It can be shown by direct computation from Eq. (349) that

>
Ve = oDVE ‘ (350)

in the asymptotic regime, with D being the asymptotic diffusion
coefficient.

C. Variable Eddington Factors and Flux Limited Diffusion
One of the difficulties with both the Eddington diffusion

description and asymptotic diffusion theory is that they often
predict too large a radiative £lux. That is, since
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tgaéﬁ.*5ff’d5,1(55.5;{' R | (351)

f ;lf‘1d§§ i(ﬁ)‘ y A >- ] : | | ‘ (352)

by

we must have

—

’* . - ) .

|F| < cE - (353)
with the équaliﬁy holding only in the streaming limit [when I(ﬁ)
is a Dirac 'aelta function in some direction]. In the two

diffusion theories just described, one has

¥ o —DU(eE) , | (354)

and hence for large gradients, one can obtain a £lux that
violates Eq. (353).

We discuss various methods that have been suggested to
remedy this problem; or more generally, to obtain an approximate
description of radiative transfer, either a telegrapher or dif-
fusion description, which is more accurate than Eddington or

asynptotic theory.
He begiﬁ with the equation of transfer

laI . .rz-c_—. 7
R V1 + oI = £= (o b + o E) , (355)

which has as the first two angular moments

3% + VoF = co (b -8 , | (356)
and

1 oF 3

S 3r t Ve + oF =0 . (357)
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The variable Eddington factor approach to. radiative tranéfér

18 to define the Eddington tensor T as

e 4 4

£
s
P

/E S (358)

rewrite Eq. (357) as

%

13 +c$<fz>+o?-o, o (359)

144

and postulate-an apriori expression for T in terms of E, §, Oq,
Og, and b. The vast majority of Eddington tensors have been

assumed, or derived, to be of the form

> .
% l_%_l Fadx-1 x -1 1 if , (360)

>
where 1 is the 1identity tensor, and

f = F/eE (361)

with f = ‘fl. The scalar x is referred to as the Eddington
factor. Equation.£360) fol;ows uniquely if one assumes that the
only vector that T depends upon is z. An equivalent assumption
is that the angular distribution is azimuthally symmetric about
the direction defined by f, and X is then given by

1
[ ame21(d)
yx = ‘11 , (362)
Il duI(R)
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 ”where o= 5 f/f. The Eddington approximation previously discussed
'correspongs to x : 1/3. ‘We' note from its "definition that the
traca of T must be. unity, and Eq. - (360) has this property.

One also has the Lnequalities'f

0L £<L1 , : o _ (363)

£2<x <l . | (364)

Equaticn (363).15 just a rewriting of Eq. (353), and Eq. {(364) is
just an application of the Schwartz ineqhality. The prescriptions
that have been suggested, or derived, fqr’x are generally of the

functioﬁél form
x = x(£,0) : ' (365)

That is, the Eddington factor depends upon the magnitude of the
dimensionless flux f and the effective single scatter albedo w de-

fined as

b + o E
a 8

oE * (366)

W =

I1f 1(5) in Eq. (362) 4is 4isotropic, we obtain x = 1/3, the
Eddington result. '
Since isotropic intensity corresponds to f = 0, we expect

all reasonable functions X to have the limiting form
x(0,w) = 1/3 . (367)

At the other extreme, 1f 1(5) in Eq. (362) is a Dirac delta
function 8(1 - u) or 8(1 + p), which corresponds to unidirectional
streaming, we obtain yx = l. For this angular distribution, £ = 1,

and hence we should have
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x(1,0) =1 “u :Jf‘ﬁgslfiitigff;fffa;:"hv | (368)

Since ¥ and (to a 'lessé;' eerﬁt)M;f; are both measures of the
anisotropy 6f~ the sbecifip,~intgnsiﬁy of radiation, omne would
qﬁalitatively expect that,* wouidrvary.monoﬁonically betwaen these
two limits. B L '

The flux limiting approach to radiative transfer is to re-
place Eq. (357), the fifst.moment; witﬁ a Fick's law of Jdiffusion

o= - % ?(cE) o (369)

where the (di&ensiohless) diffusion coefficient is postulated, or
derived, as a functional of E, cs;l dg, and b, The 3Idea here
18 to choose a functional form of D such that the resulting
diffusion theory is fully flux limited, i.e.,

"
[F| < cE , (370)

as stated in Eqe. (363). In general, the suggested forms for D

have depended upon the dimensionless gradient

x - L2

cE ’ (371)
and the effective albedo w, or equivalently,
D = D(R,w) , (372)

where

VE| '
Ru%nl—i‘- . (373)

cwE

On qualitative physical grounds, one would expect any reasonable

prescription for the diffusion coefficient to reproduce classical
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(R =0, w = 1), teee, LT

DCO,1) = 1/3 . | | S (374)
In addition, oné‘mhst have

'D(R,w) —_— 0, ' | | (375)

R

for Fick's law, Eqe. (369), to yield a finite flux in the limit of
infinite gradieﬁps. One would also expect D to be a monotonically
decreasing function of R to properiy maintain flux limiting.

We note that Fick's law, Ege. (369), could be genevralized to

ijnvolve a tensor diffusion coefficient of the form

& .
cDeVE + oF = 0 . (376)

This coumplexity is probably unwarranted since any Fick's law is

approximate in any event.

Two Examples
Before proceeding mnore generally, we give two exanples, one

assumed (as did the originator) and one derived (as did the
originator) of flux limited diffusion coefficients and Eddington

factorse.

Example #1
J. Wilson of Lawrence Livermore Laboratory proposed a diffu-

slion éoefficient of the form

1
D=3+ 8 ° (377)

which gives a Fick's law of the form
. ]
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R, fif' R S e ; :
Foa- [ V(cE) . ' - o
:[3mo + ]$E|/E] - | RS

We note the three préperties;

(1) 1In near thermodynamic equilibrium (R = 0, w. ~ 1), this
‘réduces to -the Eddington result

Fo= -2 V(eE) . (379)
(2) Fo;-ihfinite gradients, we obtain the streaming result
[F] = c& . | | | | (380)

(3) D decreases monotonically with R.

This model was proposed in an adhoc manner, as a simple functional

form having these three properties,

Example #2

By contrast, Levermore of LLL used the ideas of the Chapman~-

Enskog theory of gases to derive a flux 1limited diffusion
coefficient and a corresponding Eddington factor. We give here a

simplified derivation. We begin with the equation of transfer

1 31 c )
-&- -a—t- + 5‘61 + gl = "ﬁ' (oab + OBE) ’ (381)

and its zeroth moment

9E
=+ VoF m co_(b - E) . (382)

We introduce the normalized specific intensity w(;,v,ﬁ,t) by the

equation

92

s

- R e

s b

o= T

e



TaeBy
where Y is normalized .to

(385)
| a& WE =1 .
b

(384)
The function ¥V is known in two limiting cases.
(isotropic) 1limit we have

In the Eddington
1 oaos
v == [1 - 2-VE/eE]

have

(385)
where 'VEl/oE is assumed to be small. 1In the streaming limit, we

b=oG-d)

where

62(5 - 58)

(386)
1s the angular Dirac delta function indicating
streaming in the direction 55. Use of Eq. (383) in Egs. (381)
and (382) gives '

0

3(EY)
at

OE

t

ol

+ feF(EY) + oEY = 4= (o b + o E) ,

+ Ve(EE) = o (b - E) .

(387)
(388)
Here f is the normalized radiative flux defined by
F = cef , (389)
or equivalently

\0
10
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We now use Eq. (388) to eliginatéAaE/QF’in Eq. (387). This gives
) 1 a‘p " [} "—7 L] ‘ -7 °
(2 5% ety)e + (8o%E - 1 e - £Vl + 0 E + 0,b)¥

= %.i— (dab« ~+ USE)" . (391)

Eqﬁa;ion (391) {s exact. To proceed, we make the assumption that
the normalized intensity ijs 'a slowly varying function of space

and time. Specifically, we set

190 L Bty |
ET+§$¢ o . (392)

The justification for Eq. (392) is that it is true in the two
limiting case just discussed, and hopefully introduces a small
error in intermediate situations. Use of Eq. (392) in Egq. (391)

gives

(%P - Fo¥E + ouwE)y = %%5 , (393)

where w is the effective albedo given by

oab + GBE
w -——-—-b—g"‘"'— . (394)

In obtai=ing Eq. (393) we have used

Yot =0 , (395)

which follows from integration of Eq. (392) over all solid angle
and Eq. (384). 1If we define the vector R as
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- GwE. °?

R = _VVE‘ o - o . (396)

we can solve:Eq. (393) for ¥ as

i i 1 ’ '
4“_;1 + R - Rk (397)

From Eqs. (390) and (397), it is clear that the vectors ? and ﬁ

are in the same.direction, and we write
= arE » (398)

where R = |ﬁ|. The proportionality function A(R) between ¥ and R
follows by demanding that y be properly normalized. We find,
using Eq. (397) in Eq. (384) o

1 = I
AT m 1 + AR2 - feR R 1 + AR2

Solving this for A(R), we find

M(R) = x (coth R - =) . (400)

Alternately, one could obtain this same result by using Eq. (397)

in the defining function for f, namely Eq. (390). Use of
Eqs. (398) and (400) in Eq. (397) gives the angular distribution

in terms of the vector i as

1 1
] . (401)
R coth R - ﬁoﬁ

o =5 [

95

PO ot e

Prnn o s

[T



It ‘1s easily seen that in the two limits previously discussed
'[see Eq. (385) "and (386)], which here corresponds to R+0 and R+e,

(401) gives the proper angular distributions-

Eq.‘
To obtain-a Fick's law, we combine Eqs. (389), (396), (398),

and (400) to obtain _

Fa-2¥em , | (402)

where the dimensionless diffusion coefficient D is given by

D = io (eoth R = ) . (403)
We see this Fick's law has thelp;operties:
(1) In near thermodynamic equilibrium (R = 0, w = 1)
D+ 1/3 . (404)
(2) For any value of R and w
[F| < cE , (405)
and, in particular, as R + «
(406)

Y
[¥| = cE .
(3) D is monotonically decreasing with R.

To obtain the corresponding Eddington factor X, one uses the

angular distribution, Eq. (401), in the expression for X given by
Eq. (362)s Performing the integrations, one finds

1 (407)

| e

x = coth R[coth R -

0
O
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I1f one wishes }éénVa -ﬁgﬁ¢£iﬁnl’of.lf;t;rather ~than. R ‘as - iq
'Eq. (407), one uses Egss (398)'ahﬁn1600)“t6 obtain '

f = coth R-=-1/R J;7‘ | (408)

Elimination of R between Eqs. (407) and (408) gives ¥ as a-

function of f. It is easily shown that x(f) has the three

properties:

(1) x(0) = 1/3 ,

(2) x(» =1 ,

(3) x(f) is monotonically inereasing with f. (409)

A Relationship Between Eddington Factors and. Flux Limiters

Returning now to more general considerations, we derive an

(approximate) relationship between % and D in a fairly general .

way. We begin with the first moment equation given by Eq. (359),
ioeo,

aF
ot

1 3 »
S 5 cVe(FE) + oF = 0 (410)

+

with f given by

+*> + :
Tsi—g—lf+ix—§—l-f—f. (411)

We eliminate the Bﬁlat term in Eq. (410) by writing

3E
ot °*

] LTS

-g_f. - (412)
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The justification for Eq._ (412) s{»thAt >is éofréct in. the. .
‘1sotropic CE = 0) and streaming (f = 1) limits, and hopefully is

reasonably accurate in general. lWe‘then have

%%%-&J (TE)+of=o . (413)

We use the conservation eqﬁation; i.e.,

JE 3 '
e * VeF = eo (b - E) , _ (414)

to eliminate 3E/3t in Eq. (413). This gives

Fe-Lon o TR Gdey (415)

owcE

with w once again given by

°ab + OSE
w -‘-‘-—-——-TE——-— . (416)

To obtain a Fick'’s law of diffusion of the form

Fa-2%er , (417)

++

it is necessary to assume that the Eddington tensor T is slowly

varying in space so that one can write

+ + '
Vo(fe) = TolE (418)
From Eqs. (411), (415), and (418) it is easily shown that the
vectors ? and $E are proportional to one another. Then, using

Eqe (411) in Eq. (418) we £ind
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EALE R (419)
andrhénce qu~(4;55‘bec§§esr
?k. _ X [1 - V.F ] 3(cE)
ow owcE

. g (420)

Equation (420) is a Fick's law of diffusion with the diffﬁsion

coefficient D, in dimensionless form, given by

LEeE |
D -.X [1"-'0—a-c—§- . ) R (421)

Now, by assumption, X depends upon £ and w, and we want D to de~-
pend upon only R and wy;  This means we must eliminte the unwanted

functional dependence VeF from Eq. (421). We do this by writing

F=fc , (422)
and assuming fsis slowly varying in space. We then have
VeF = cBoVE = -ef|¥E| (423)

with the last equality following from the fact that the vector f

and VE are in opposite directions [see Eq. (417)] We the obtain
from Eq. (421)

L SO ) _ (424)

where
VE ‘
R 'éﬁﬁl . (425)
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"i;e;,
f.Q -2 Fer) o “‘ . . O (426)
by cE and takiﬁg»the absolute valqe. This‘g;ves
f.; DuR o | “ (427)
\Given x = X(f,w), elimination of £ between Egs. (424) and (427)

gives D = D(R,u). Conversely, given D = D(R,uw), elimination of R
between Eqs. (424) .and (427) gives x = X(f,0)e.

A Compar‘son of Various Flux Limiters and Eddington Factors

We examine the properties of certain flux limited diffusion
coefficients and Eddington factors that have been proposed and
are currently in use. In this examination we pay attention to
~ the dinequalities given by Egse (363) and (364); the limiting
expressions given by Egs. (367), (368), (374), and (375); and the
monotonicity prqperties, discussed earlier. ~ We consider the
various prescriptions in roughly chronological order of their

introductione.

1. The Eddington Approximation

The classical Eddington approximation corresponds to

D = 1/3 , ’ | (428)

which clearly viclates the large R 1imit given by Eq. (375).
This is just a manifestation that classical diffusion theory is
not flux limited. ©Equations (424) and (427) give as the corres-
ponding Eddington factor
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T - (429

Except for © = 0, Eq. (429) violates the inequality X < 13 in
particular, Eq. (368) is not satisfied. ﬁéngé we conclude, as is
well known, that the classical Eddington approximation is limited

in'its region of vaiidity.

2. The Wilsom (Sum) Flux Liniter

As previously mentioned, Je Wilson of LLL suggested the form

1 :
D=3@+R) (430)

as a means Of {ntroducing flux limiting into diffusion theory.
This form has all the desirable properties for a diffusion
coefficient as previously discusseds From Egs. (424) and (427),
we find the corresponding Eddington factor 1s given by

x =+ -g+38D) . : (431)

Although Eqe. (431) gives the correct l1imiting behavior at £ = 0
and £ = 1, it is not a monotonic function of f. X, as given by
Eq. (431), has’'a minimum value of 11/36 at f = 1/6. Rence, fronm
an examination of the Eddington factor corrzsponding to the
diffusion coefficient, .we conclude that the diffusion coefficient
jtself may be less than satisfactorye In particular, one can
conjecture that this diffusion coefficient probably introduces
too much £lux limiting, thereby underestimating the fluxe.

3., The Wilson (Maximun) Flux Limiterx

One can avoid the minimum in x Just discussed by replacing

10L



D= "_(432)"

w[max(3,R)]~ff“
Tnis gives for theicbrresponding Eddingtoh factor
| 1 2 - : ]
x =5+t £, RL3 : (433)

For R > 3, Egse (424) and (427) cannot be solved for x. In
particular, Eq. (427)  simply gives £ = 1. If we interpret
Eq. (433) to hold for all £ in the physical range 0L £ X1, ve
see the inequality x <1 is violated for £2 > 2/3. Since Yy is
too large for f near unity, one can conjecture that the diffusion
coefficient may in y»neral overestimate the flux, 1.e., mnot give

enough flux limiting.

4. The Wilson (Fit) Flux Limiterx
By £fitting to certain transport calculations, Wilson has

suggested a diffusion coefficient given by

D = 1 (434
3 + wR[1 + 3exp - (wR/2)] ’ )

which has all,bf the desired properties discussed earlier. For
this complex functional form, one cannot analytically solve
Eqs. (424) and (427) for x(£,w)e. However, {in the limits of small

and large R, one finds the results

x-%(1-4f)+o(f’-), £<< 1, (435)

x =5 [u(i-£) + 3£2] + o(exp - [7(—1_3_—5]), (1-£) << 1 . (436)

e see that ¥ = 1 at f = 1 in accord with Eq. (368). However,
only for w = 1 do we recover the £ = 0 limit given by Eq. (367).

We also note that
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£=0 ' : e

lo

which implies that the curve X vss £-is- not monotonic but goes’
through a ninimum at some poxnt. Once asain, this suggests that
the corresponding diffusion coefficient, Eq. (433),  nay

underestinate the flux,.-

5. Asymptotic Diffusion Theory

As previdhsly diécussed, in asymptotic diffusion theory
the diffuéion coefficient is given as a function of w (ox w or m)

alone according to

p = 222 ' (438)
K2

where K satisfies the transcendental equation

2K

1 + K
-(;—"Zn( )

1 - K * (439)

This diffusion coefficient has the limiting forms
D(w = 0) = 1 3 D(w = 1) = 1/3 . (440)

We see that Eq. (438) gives the proper thermodynamic 1limit,
Eq. (374), but clearly violates the large R limit, Eqe (375). The

corresponding Eddington factor is found from Egse (424) and (427)
to be

9&1_:_91 + £2
X2

X = . ’ (441)
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This éxﬁrebsion,~ror a- general w, éééiéfieggneither the £ = 0
1imit, Eq. (367), nor: the £ = 1 1limit, Eq. (368).  Thus it
appears that asymptotic diffusion theory is of limited validity.

6. The Winslow Flux Limiter ‘
To improve upon asymptotic diffusion theory, A« Winslow

"(LLL) suggested a flux limiter of the form

D
VA .

max[1,uwiR]

where Dy, is the asymptotic diffusion coefficient given by
Eq. (438) and ¢ = 2(w) is the linear extrapolation for the Milne

problems Limiting values are
2(uw =0) =1 ; 2(u=1) = 0.7104 . (443)

This function has the desired properties for a diffusion
coefficient; in particular, this D vanishes for larges R, as
contrasted with the pure asymptotic diffusion "form given by
Eq. (438). From Egs. (424) and (427) we find

ol = ®) 4, g2 wrR 1 . (444)
K2

For wfR > 1, Egs. (424) and (427) cannot be solved Yor ¥Xe
Specifically, Eq. (427) simply gives’

£t ol -8 0 werR>1 . (445)

K24

If we dinterpret Eq. (444) to hold for all £ in the range
0 £ 1, we see that the inequality X <1 1is violated for 1large
f. We also note that the £ = 0 limit, Eq. (367), is not satisfied
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 e3§épt‘forfw,=\1; ’Thué'ther£9fmiquiﬁfgiﬁeﬁ b& Ea. (442), while“
" introducing flux limiting into asymptotic.diffusion theory, gives

a somewhat'nqnéphysical Eddington,factor.

7. Kershaw's Eddington Factor

Applying the theory of moments, D. Kershaw (LLL) developed a .
series of inequalities which the angﬁlaf‘moments of the specific
intensity I(ﬁ) must satisfy. Examples of these inequalities are
given by Eqs. (363) and (364). On the basis af these
inequalities, he suggested an Eddington facéof'given by

X -%‘ (1 +>2f2) ', . ' (446)

which has all the proper behavior previously discussed. The
corresponding diffusion coefficient 1is, from Egs. (424) and
(427),

_ Y9 + 4R%2 - 3
2uR?

D . (447)

This diffusion coefficient is monotonically decreasing as a
function of R, and gives the correct behavior for small and large
R [see Eqs. (374) and (375)]. Thus, Kershaw's prescription gives
both an Eddington factor and diffusion coefficlent with all of

the qualitatively correct properties as discussed earlier.

8. Minerbo's (Statistical) Eddington Factor
Treating photons as a statistical ensemble with E and F pre=

gscribed as constraints, G. Minerbo, LANL, computed the most

likely angular distribution for the specific dintensity. From
this distribution he deduced an Eddington factor as a function of

f given parametrically by

1105



C Lo S 'i'}g L - - (448)

Eliminating C Dbetween thesé two  equations gives X = X(E).

Setting C = 0 and C = m,'respectively;'in Eqs.. (448) and (449)
gives the proper limiting values

(£ = 0) =1/3 3 x(£=1)=1 .« : (450)

Further, this x increases monotonicaily,betweeﬁ these two limitse.

The corresponding diffusion coefficlent can be written as

A(R a |
D(R,0) = MEL (451)
. where the function A depends only upon Re This functional

dependence 1is obtainéd by eliminating C between the two equations
2 1 , 2
(AR)2 + (5 + £) (R) =1 =0 (452)

AR = coth C --é . (453)

Setting C = 0 and C = », respectively, Eqs. £{45Z) and (453) gives
the limiting behavior ‘

AC(R = 0) = 1/3 3 A =———+ 1/R (454)

?
R+
The function A(R) decreases monotonically as R increases. Thus

the Minerbo treatment also gives both an Eddington factor and

diffusion coefficient that are qualitatively correcte
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9.; Minerbo s (Linear) Eddington Factor 3H

o : As “an approximation, to ‘the’ angular distribution resulting
from his statistical arggments, Minerbo considered_a linear (in
W) angﬂla;édistributioﬁ ﬁo?Aéhe;specific-iﬁtensity of fadiation,
with the constraint that this distribution be non-negativo.. This

gave an Eddington factor
x = 1/3 , 0<£L /3, (455a)
1 3 ., 3 |

which has the. cofreot monotonic behavior and limiting values.
The corresponding diffusion coefficient can be writtem in the

form given by Eq. (451) with

Y9 + 12RZ =~
A(r) = 22 6::,: 2, o0g<RrRg32 , (456a)

a(ry = SBF 1) - vARFL 5 ¢cRe (456b)

RZ

It 4is clear from Eq. (456) that A(R) 1s a monotonically
decreasing function of R, with limiting behavior

MR = 0) = 1/3 ;3 A ———> 1/R . €457)
R+

Thus, Minerbo's linear' treatment gives qualitatively correct

results for both the Eddington factor and the diffusion
coefficient; although the Eddington factor has a somewhat
unrealistic flat behavior for £ £ 1/3.
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10."Levermotefsi(ChébméﬁﬁEnskdéf‘Diffﬁsion Coefficient
‘ As pnevibuély described, Levermore obtained a diffusion

coefficient given by Eq. (451) with
<L eonr - d) |
A(R) = ¢ (coth 7} | (458)

which is prope#lyrmdnqtdﬁiCally decreasing from a value of /3 at
R = 0 to a llR‘ribehaVior.fOr large R. The Eddidgton factor
associated with Eq. (458) follows from Eqs. (424), (427), and
(451) as |

X = coth R(coth R - %) ’ (459)

f = coth R -% . (460)

Elimination of R between Eqs. (459) and (460) gives ¥ as a
function of f£f. We note'that Eqs (459) is the same result one
obtains by computing the Eddington factor directly from the
angular distribution associated with the Levermore theory [see
Eq. (407)]. The above functional form for X has the limiting

values
X(f = 0) = 1/3 ; x(f = 1) =1 (461)

and varies monotonically between these two limits. Thus we see

that the Levermore treatment gives proper behavior for both D and

Xe

1l Levermore's (Lorentz) Eddington Factor

In a separate approach, Levermore applied a Lorentz trans-
formation to the equation of transfer, transforming to a frame in

which the radiative flux is zero. In this frame he assumed that
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the Eddington factét_isf1j3Q7'Tfahsformiﬁgfback to the original

frame,'he'obtéinéd

2 | S |
X = 'i":: 25 s ((‘62)
A earil (463)

where B = lzl/c; with ¢ the speed of light and v the velocity of
the transformed frame with respect to the original frame.

Eliminating 8 between these two equations gives X explicitly as a

function of £, i.e.,

x =& (5 - 2/4 - 38%) . (464)

We note that this functional form has all of the qualitative
properties that an Eddington factor should have. We £ind that
the corresponding diffusion coefficient is given by Eq. (451),

with A(R) determined by eliminating B between the two equations

- p2 7
o= 3(A—E5) (465)
3 + 82
2
R o= AB(3 * BT (466)
3(1 - 82)2

In the limits of 8 ~ 0 and g ~ 1, one obtains

A(R = 0) = 1/3 ;3 A — 1/R , (467)

R+
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thefﬁddington factor:and th’?diffusion coefficient.»‘
We can summarize these results as follows. Oi the eleven

fﬁw»Eddington factors ‘~én E diffusion

different '-tteatments‘
coefficients, five were shown to be qualitatively correet; These

s
,c-«

' five treatments arEo:}}"ﬂ<;;if1g:i?

R Kershaw s L o S S
'kéé.- Hinerbo s (statistical) - o N
3. Minerbo 8. (linear)
-§}~ Levermore s (Chapman-Enskog)
1f5,r Levermore s (Lorentz) ‘ ‘

,“ ‘«',

In all ‘f‘ivejeases,_Athie.»‘_clif'f\"/x's,’ion'\-.'eo’ef.fifc‘i'ent‘;' can be writfen -

p(ryey = ARL o L sy

[}

'and Figure 1 plots A(R) for these five different approaehes.v“’e'f

see that a1l five curves have a very similat behavior, decreasing
monotonically between the limits common to all five curves

AC0):=.1/3 ;. A(R) ————'% . - o C469)

These. five .curves .also have the common characteristic

Lo, o wy
. ) iR’-o - - N

-Similarly, Figure 2 plots“rhe Eddington factor X, which iﬁ*

all five cases 18 a function of £ alone. Again we see that all

of the ‘curves behave similarly, increasing’ monotonically as f

increases, and sharing the common characteristics
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’ "fwe.\note that hé{j" 2

“somewhat greater than in the-diffusion coefficient (Or A) CUrves,'

H_indicating that D is a weaker functional of X than X is of D.“M‘-

It 1is probably difficult. if not impossible, to’ single out

‘“any of these five treatmente:aé‘"best t Which of the five will
'perform the best is undoubtedlyfproblem dependent.» On the other-

'.hand, since the curves are' all’ quite similar, jit probably is.

relatively unimportant wnich of the five :reatments is adopted.

\’One can conjecture that all w*ll give comparable accuracy whec‘

,T,applied to afvariety of problems;~a1though the linear treatment”

of Minerbo could perhaps be expected to be somewhat lees accurater

because’ of ‘the” unrealistic frat behavior ‘of 'x for £ ( 1!3. “One .

can also conjecture that‘f’h other six treatments have"

discussed are probably inferior over a: wide range of problems 1n;
that they each display at ;eest ‘one’ qualitatively incorrect

characteristic. “;ﬁ. e -

ATy

‘ gton: factor ccrves~‘is“‘
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Cop. Eq’uili'iér'iumTbiff’u‘sid‘i{ Theory. =

"’Theiéimplqst'tfea;mgh;'of\rédiétive;t:d
erally referred to as equilibrium

sfer, and radiation-

hydrodynamics,. is what Aishgen
diffusion " theorye This 1s a- further"siﬁplificapion of the

Eddington;approximation discﬁssedrearlier,Land really comatitutes
an approximate solution of the Eddington equations. That is,

given the _material temperature distribution within a specific

_system, -the équilibriuﬁ diffusion approkimation provides an

explicit expression giving the speéific intensity as a function

of all its variables, namely space, frequency, angle, and time.
In partiéula:,'it gives the energy density,Aradiative flux, and
pressure tengon as functionals of the material temperature, and
hence as implicit functions of space and time, as required in the
equations of hydrodynamics when a radiation field 1is present.
Although-equilibrium diffusion theory corresponds to & Vvery low
order approximation_in both frequency and angle (as well as space
and time) it 1is, because of its simplicity, a widely used
calculational scheme in many radiation-hydrodynamic problemns.,
Surprisingly ensugh, in view of all the approximations made, it
turns out to be a reasonably accurate description for many
problems, giving gross features of the radiation flow correctly,
in a qualitative and even a semi-quantitative sense.

We begin with the Eddington moment equations, namely [see
Eqs. (306) and (312)]

agév) + $-§(v) = coa(v)[b(v,T) - E(v)} ,‘. (472)
?(V) - - —5—5—2'-3—)— G[CE(V)] “ (473)

where ; and t dependences of all quantities is understood. The
underlying assumptions in these equations are: (1) the specific
intensity is almost isotropic as expressed quantitatively by
Eq. (308), 1.es, -
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~1(6;§);% %?j[éﬁ(V)'+!3§°f(;)]”f;f | | (474)

and (2) the prqbléd is»collisipn domiﬁated so that ‘aflet can be
neglected compared to coiéA We aésdme< that the left hand side of
Eq. (472) 1is sufficiently small so that it can be neglected. The
- Eqe (472) becones ‘

co_(v)[b(v,T) -Ew]=0 , C475)

which implieé that the ‘radiation energy density 1is locally
Planckian at the local material temperature, i.e.,

ECE,v,8) = b(v,T) = 2% B(v,T) . (476)

Use of this result in Eq. (473) gives

4u

2 ¥B(v,T) (477)
30(r,v,t)

F(;a"at) = =
where T = T(;,t). The gradient operator acts on the Planck
function through the temperature, and we can rewrite Eqe (477) as

4 8B(v,T)
9T

F(E,v,t) = - VT(T,t) (478)

30(;»‘)11:)'

Use of Eqs. (476) and (478) in Eq. (474) gives

1(, v, H,t) = B(v,T) - — BOLT fdr(E,e) o (479)
: o(r,v,t)

Equation (479) is the primary result of the equilibrium diffusion
approximation and allows an explicit (albeit approximate) calcu=

jation of the specific intensity once the temperature distribu-

tion is known.
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Thelqeaﬁtities of primary 1nterest 1n radiation hydredynamic
”problemsnare the vradiative energy density, flux,rand pressure
‘tensor as defined by Egs. (21) through (23) In equilibrium
diffusion theory these arxe given by, from Eq. (479),

E(T,t) = %1.£w dvB(V,T) = aT“(g;t) N (4§0)
F(E,e) = - éﬂ Vr(E,e) [ av +1 aag;,T) , (481)
° o(r,v,t)
p = pyy * ﬁ% g” de(v,Tj'=A% aT%(t,t) (482a)
“o, 1*t3 . - (482b)

where a is the radiation constant given by Eq. (27).
7he expression for the radiative flux, Eq.A (481), 1is
frequently written in a somewhat d;fferent forme. By grouping

terms, this equation can be rewritten 'as

f” dv - 3B(v,T)
QY aT
F(2,e) = - 22 IcE,e) |2 ¢ :B(v = f av BT (483)
f ____L__
o
If we recognize that
© 8B(v,T) ac
[T v = = T3, (484)

o

and define a mean OT average (over frequency) total cross section

Fe
oR(r,t) as

=t
ot
[« 1)




e gy ARG T
o’-' 9T e T .

OR'gﬂfq dv 1. 8B(v,T) (485)
o - ~o(v) . 9T.. : ‘
EqQe (4835>¢én fg rewfitﬁen,és,
Bt = -2 3,0,y C(486)
o Uk(r,t) ' . .
or | |
F(r,t) = - .ai _ FTh (T, t) - < VE(F,t) o (487)
S 3op(x,t) : 3op(x,t) o

The coefficlent GR(;gt) is genéfally referred to as the Rosseland
mean, and is widely used in radiative transfer work as we shall
discuss in some detail laters '

~ The (non-relativistic) hydrodynamic equations, with radia-
tion terms, in the equilibrium diffusion approximation  result
(presumably) from using these results for E, f, and P in the
" equations of hydrodynamics given by Eqs. (16) through (18). This

gives
-g—%-i' 6'(p3) =0 , (488)
3 (oly + Bz + By + Vool =0, (489)
3 1 1 >
57 (7 pu? +E + E) + Ve[(5 puZ + E_ + P_)u]
[+
= $.33; VE (490)
‘where
E = 3P = aTt . (491)

=
(=)
~3

v ¥R adthi * kS W oR R 1 T



'j'In writing Eq. (489) we - have neglected a term 3[§/c2]/3t as being
negligibly small compated to a(pu)/at. o

This set of Eulerian equations can be put in another form by
introducing the Lagrangian derivative ‘

Vo, ~ . (492)

=+

D _ 9
pc =3¢ T

and deleting the time derivaﬁive of the kinetic energy in
Eq. (490). This is accomplished ' by dotting Eq. (489) with u to
form thne mecpaﬁical energy balance and subtracting this result

from Eqe (490)., The result of these algebraic manipulations is
the equivalent set of equations

b 2 (%) - Yea=0 , (493)
o2+ Ve +P) =0 , (494)
P = [— (E, + E)] + o(P_ + P) 3= L (-)

= 6-35; VE + Ve[(E + P)u] . (495)

Equations (493) through (495) are <Rresumabiy the equations of
rédiation-hydrodynamics ‘in  the 'equilibrium diffusion 1limit.

However, they are not! This set of equations is incorrect. The

.correct equations are:

por (3) -Ti =0, | ~ (496)
Du
P or * V(Pm + P) =0 |, (497)
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o D B g B H et my g ()= P VB (hoe)
. Comparing. Eqs.':(496)‘ thrOUgh (498), the correct set, with
Eqse. (493) through (495), ‘the incorrect set, we see that {t is
the energy equation, Eq. (495), which 13 incorrect. It contains
a term 3;[(3 + P)u] not present in the correct equation.

That Eds. (496) “through (498) constitute, in fact, the
correct set can be argued on physical grounds as follows. Equi-
lJibrium diffusion theory corresponds to the assumption of local
thermodynamic'equilibrium between the radiation. and the matter.
Thus in the hydrodynamic equations formulated as force and energy
balances 1in the reference frame moving with the fluid (di.e.,
formulated with Lagrangian time'derivatives), one would account
for the radiation energy and pressure terms by simply adding
these terms to the corresponding material terms. This is seen to
be the case in Egse. (497) and (498). The only other effect of
radiation is the flow of energy by radiative processee, and this
is accounted for by the diffusion term on the right hand side of
Eq. (498).

Since Eqs. (496) through (498) are the correct equations, we
should be able to obtain them in a consistent mathematical treat-
ment. This, of course, implies that the derivation which led to
Eqs. (493) through (495) 1is ﬁrong. The error in this derivation
was the use of an incorrect equation of transfer. We used the
non-relativistic equation of transfer, Eqe. (303), as our starting
point. To obtain the correct equation, Eq. (498), it is necessary

to use the relativistic equation of transfer containing certain

u/c termsa
To demonstrate this explicitly, we rederive equilibrium

diffusion theory starting with the relativistic equation of
transfer. For simplici:y of exposition, we neglect scattering,

in which case the equation of transfer is simply

%il%:.ﬁ)_ + Bebr(v,B) = o(v,B)[B(v,}) - (v, )] , (499)

s
[
9



where,,according “to Eqs. (253) and (254) [or (255)], ve have, to
first order in ulc, : SR . .

: : L X o aB (v) '
B(v,ﬁ) = Bo(v) + ﬁm— [3B (v) -V gv ] , (500)
: , b 3g_(v)
o(v, &) = o (v) = & [0, (V) + v —5—] - (501)

Thus Eq. (499) becomes, correct to first order in Glc,

_— - . da_{v)
i axg: 5) + B VI(v 8) = {op(v) -_ﬁ.% [°o§“)_‘ v —8 .

: 5 3 aBo(v)
-{Bo(v) + Qe [3Bg(v) -V —

] - v, D} . (502)
Forming the first two angular moments of Eq. (502), we obdtain
(V) 4 §.8cv) = -
S+ FeF(v) = o _(v)[47B (V) cE(v)]

CL ( vy o r .

] E'F(“) , (503)

+ [ao(v) + v

1280) 4 guchev) + o (0EFW)

. 3B_(v)_ =
= %1 Uo(v)[3Bo(v) -V 3v %
+ dc (v)
- [2X B (v) - —°c§(V)] [o,(v) + v —5—] - (508




“In 'ﬁq. (503) we recognize that ﬁ"féanf-aiways neglect . the
(B/c). f\v) term since ‘F(V)I < CE(V)s “and we are assuming u/c

smalls If we introduce the Eddington approx;mation, namely

JEM) (505)

ul»-#

»4+ 1 : _,*’-»
$oB(v) =1 FE(w) 5 BBV =3

and neglect'the af/at term (by assuming the problem is <ollision

dominated), we then have the two moment equations

A

éggzl + $.§<v? = o _(v)[47B (V) - cE(V)] (506)
: ‘ 3B _(v)_ =+
% V(cE) + oo(v)f(v)’= %ﬁ ao(v)[BBo(v) -V ——gv ]'%
aoo(v) , 3
-3 [o () + v —35 ] [4mB (V) - cE{v)] 5 ~ (507)

To complete the equilibrium diffusion approximation it is assumed

that locally radiation emission and absorption at each frequency

are in equilibrium. This implies that the right hand side of

Eq. (506) should be set to zero, 1l.e.,

cE(v) = 4ﬂBo(V) e (508)
Using this result in Eq. (507), we obtain
2B (v) 3B (v)_=*
- - AT o Am _ oy —9 14
f(v) 3o°(v) 3T T+ 3 [3Bo(v) d ERY ] c (509)
Integration of Eq. (509) over all frequencies, introducing
(510)

E « 3P = aT% ,
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> T e 2., & + ' L : ' '
R 4 . . : .
or, equivilently,
> c »> |
¥ - " Fox JE + (E + P)u . : (512)

The convective. term in Eq. (512), d.e., that involving the
velocity 3 is, the result of having retainéd the relativistic
terms in thé.equation of transfer. >Tﬁie term is clearly seen to
be formally of the order 3/c compéred to the gradient térm.
Because of this, the terms in the eduatiod of transfer which give
rise to the velocity term in Eq. (512) [that is, the K/c terms in
Eq. (502)] can generally be dropped as negligibly small if, in
fact, 3/c is negligibly small. However, in a true equilibrium
diffusion problem, the two terms on the right hand side of
Eqe (512) can be of comparable magnitude, since it is the essence
of an equilibrium diffusion problem that the gradient term in
Eq. (512) is small. Further, this additional term is needed to
obtain the correct energy equation, Eq. (498).

1f we use Eq. (512) for F in the general mnon-relativistic
energy equation, Eq. (18), we find

3 (1 1 *
-5?(-z-puz+Em+E)+$~[(—2-pu2+Em+Pm+E+P)ﬁ]
- ‘c .
= %'-3-6-1{' 31-: o (513)

Combining this with the momentum equation, Eq. (489) to eliminate
8(pu2/2)3t and introducing the Lagrangian time derivative,
Eqe (513) can be rewritten as
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which is _the qorrect’ energy equation [compare Eqé- (498) and
(514)]. ' | |
In summary, in any problem other than one described by
the Vequilibrium ‘diffusion 1limit, one can, assuming ale small,
properly negleci glc terms in the equation of transfer. WHowever,
1f one wants the genera1 equat1on7bf transfer to properly 1i§it
to the equilibrium diffusion description, one needs earry‘alc‘
terms. '[It should be noted that in the material terms in ﬁhe
relativistic hydrodynamic equations, the lowest order corrections
are O(uzlcz)].. It should also be noted that the u/c correction
terms: to the material rest frame absorption cross section
cancelled out in the development of the equilibrium diffusion
limit. This suggests a simpler eQuation of transfer, namely

3
13100 4 Fdr(v,d)

) 3 aBo(v)
= o (v){B_(v) + &L [3B_(v) - v —5—] = 1(v,} . (515)

In the non-~diffusion 1limit, this 1s a correct equation since the
J/c terms can properly be neglected and hence the exact form of
these terms is irrelevant. In the diffusion 1liwit, this equation
of transfer is also correct in that it again leads to Eq. (512).

An even simpler equation with these same properties is

1 31(v,R)
"'c" __5?2-—-— + ﬁ'vl(\’,ﬁ)

-
= o (v){B (W1 + 48.3] - 1(v, D} . (516)
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ZObviously,\other forms are also . possible.‘ _ Thus, with feeﬁeet toi
the - derivatiov of the correct equilibrium diffusion description
of radiation hydrodynamics, Eqs. (502), '(515), and (516), as well
as other possibilities, should be equally valid- Equation (502)
i8 clearly the most complex, although asthetically it 1s to be
preferfed since it follows most directly from basic physical

considerationse

E. Marshak Waves

An interesting physical phenomenon in radiative transfer is

- that of Marshaﬁ_waves. If a local source of energy is introduced

into a cold absorber, and the only mechanism for energy transfer
is via‘radiative processes, the bulk of the energy propagates as
a thermal wave. Ahead of the wavefront (distinct from the speed
of 1light wavefroant), the material temperature is essentially
zZeroe This phenomenon 1s described remarkably accurately by
equilibrium diffusion theory.

We consider uniform matter with & constant heat capacity

cy so that the material energy density is given by

Em = ch . (517)

We assume that the scattering cross section is zero, and that the
absorption cross section is proportional to V©8 (for real cross

sections, an idealization 1is s =~ 3). Then the Rosseland mean,

OR» defined by Eq. (485), will be propurtional to T™S, and
we write
b
Op ™ =2 A (518)
R T8
where b 18 a constante Neglecting hydrodynamic motion, and

assuming the material energy density dominates the radiative
energy density, the equilibrium diffusion theory energy equation,
Eq. (513) or (514), becomes
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:2f ‘igiﬂ; :.'cT §'1 ’ai;{};i.ﬁ;fﬁ:rJ | - o '

SR Al A S (519)
or ’

G S (520)

where K is a composite constant

bac
K = 3pe, (521)

and n = 8 + 3. We consider two problems described by Eq. (520)
and demonstrate the existence, according to this wuodel, of

Marshak wavese.

Problem #1
This problem corresponds to an instantaneous release, at

t = 0, of an amount of energy cyQ [we include the factor cy
here to simplify a subsequent formula, namely Eqe (525)] at a
point r = 0 in an 2th dimensional infinite mediume Because of
the symmetry of this problem, Eq. (520) becomes one dimensional,

f.e.,

oT K

t rz-l

o:lo:
2]

2-1.n 3T
(* 71" 32) s t20, (522)

where £ = 1,2,3 corresponds to plane, cylindrical, and spherical
geometry, respectively.. The initial and boundary conditions on
Eqs (522) are

T(xr,0) = 0 , (523)

T(w,t) = 0 ; T(0,t) { © o (524)
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[In:flade geoméirYj'i'B’L;wﬁq;'(SZé)Wisireﬁiaced_with'T(—w,t) =
‘w(w,t) = 0l. The source in this problem implies a Dirac delta
function, in both space and time, source should be added to the
:right hand side of Eq. (522). An equivalent treatment is to

léavg "Eq. (522) as it {s, and impose the integral energy

conservation condition

Q= gw drA, (£)T(r,t) , (525)

where Ag(r) is the surface area of a sphere of radius r in

2th dimensional “space, i.e.,

/2 4-1
Aﬂ.(r) = T2 b 3 » (526)
with I'(z) denoting the usual gamma function.
We seek a similarity solution of the form
(337)
r 2 24+nk
(r,t) = | —— £(8) (527)
(Kt)
where the similarity variable £ is defined as
..(..._l__.)
n 2+n %
E = r|Q Kt . (528)
Then Eqe. (522) becomes
+1
2 + nfy & (p2-1 df” d_ ,hey o 0
(1) 3¢ (& sF) tgp () =0, (529)

and the subsidiary conditions, Eq. (523) through (525), become

IS
(=)
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f(0)~<ré ;}an(é>i;)o‘és' ‘i*: ; | : ', B 7 ? (530)

el | |
. 27 © -1 A
1 S‘TTI7ET £ dg § jf(g) . (531)

[We note that £(») = 0 is redundant since it 1is 1wplied in
Eqs (528) ] ' ’
A first integration of Eq. (529) gives

-2

' +1
+ nfy, 8-1 da£®
(210l E'f =0 (532)

n + 1 dé +

where the constant of integration has been set to zero by
considerations at & = 0 (i.e., at r = 0). A second integration

gives

1/
R 2 R R R (533)

where Eg is a constant of integration. For the solution to be
well behaved at « (namely, vanish), we take Eq. (533) to be the
solution for £(£) for 0 < § £ §,, and set

£¢E) =0, E>E . (534)

o]

It is easgily verified that thié solution has the proper continui-

ty conditions at £ = E, as required by Eq. (529), namely £(E)

and dfn+l/dE are continuous at §,+ Thus Eq. (533) must yield
o

n+l
f(tb‘:o) = dﬁE’

. = 0 , (535)
&-Eo

and it does. We determine the constant §, from the integral

conservation equation, Eq. (531). This gives



(2 + 2)(1+n) 2(1 n) r (_
éQ/Z P ( )

,1 :
+~;)

(2¥n£)
g o)

e

(536)
nr

Combining all of these reéults, we obtain as the solution

for the temperature

T(r,t) =0, r>r (t) , ‘ (537a) :
I O -
T(r,t) = R Kt | T e s (537p)

where the position of the wavefront, ry(t), is given by

1
(2+n&)

(2 + ng){1tn) ,(1=m) r“(%— + %)Q“xt
«(538)

n_"m?./Z'rn (%)

ro(t) =

We note that for n = 6, a reasonable value for realistic cross
sections, that T(r,t) is essentially flat behind the wavefront.

We also note that for this value of n, the wavefront moves quite

slowly, i.e.,
[ ¢1/8 (planes)

r (t) « ) g1/14 (cylinders) . ‘ (539)

g1/20 (spheres)
‘ .

For n = 0, the original equation, Eq. (522), is linear. 1In

this case, as is well known, there 1s no wavefront, i.e.,

ro(t) + @ {540)

and the solution, Eq. (537), limits to
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o - —>f Q : ‘2 - ?A- '
T(r,t) = = exp - (r /4Kt) - 541
2% ( xt)“/z R (341

the well known heat transfer conduction resulte

Problem #2 .
This problem corresponds to a source free halfspace occupy-

ing 0 £ z < = with a prescribed temperature T, applied at the
boundary at z = 0 for all t > 0. The equilibrium diffusion
equation, Eqe (522), becomes, since 2 =1,

3

3

l

3 n 0T . . '
R PR TR | (542)

Q

t
with initial and boundary conditions
T(Z,O) = 0 ’ (543)

7¢0,t) = T 3 T(=t) =0 . (544)

In this case an appropriate similarity solution is

T(z,t) = g(n) ‘ (545)
with
2
n =3 . (546)
/t

Then Eqs. (542) through (544) become

n 3 9 n 9
pE-c kOB (547
g(0) = T 3 g(w) =0 . (548)
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’Uﬁfbrﬁﬁﬁaféiy;,ﬁa, (547) énd<(548} do hdt;admiﬁ aréimpla>closed
form solﬁtiéﬁ{:NHdkévéf,qby‘éiémininé;tﬁis equation at n w “,‘one
can dembnstraté‘thay g(n) = 0 forlsufficiently lafge Ne Hence a
waQeffont ekist§, aﬁd ﬁe égain obtain a Marshak thermal wave. We
/,ﬂbte that in this case, Eqe. (546) implies thét the position of

the wavefront is pfopottional to Yt, a much faster wave propaga-

tion than in the previous problem.

High Order Approximations

The diffusiou approximations to the equation of transfer we
have discussed have one overriding characteristic in eonmmon:
they are all of limited accuracy. If, for a given problem, their
error 1s unacceptable, there 1s no way, within the framework of
the approximations, to systematically improve their accuracy.

- We now briefly discuss three types of approximations to the
equation of transfer which are capable of estimating the solution
to the equation of transfer to within any desired accuracy

criteria. These are:

1. The Spherical Harmonic (P-N) Method;
2. The Discrete Ordinate (S-N) Method;
3. ’The Monte Carlo Method.

In radiation-hydrodynamic problems, the Monte Carlo method

has been used mich more than the P-N or S-N meihod.

Fo The Spherical Harmonic (P-N) Method
The basis of this method is the expansion of the specific

intensity in a complete set of angular functions, called spheri-

cal harmonics, or surface harmonics. These are

Y?11(5) = Yz(u,¢) = P,l,ml(u)e1m¢ s ' (549)
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- where the<p:(u) afélthéféssdgiétédﬂﬂégehdté1fdhctions defined as

PR(R) = (1 = u?) ——fﬂé%; 5 0&mgn (550)
dp— . - ,

and Pp(n) is the usual Legendre -polynomial. These functions

are complete on the unit sphére, whiéh means that any function

defined in the intervals =1 < u < 1 and 0 £ ¢ < 2m can be

expanded as

A | .5 8 moem ymek
£(R) = £Qu,¢) = L 1 a £ Y (W) , (551)

n=0 m=-~n

where the fz are the expansion coefficients and the aﬁ are the

" normalization coefficients associated with the orthoganality

condition
8 .6
{ at ¥2(H) Y‘;*(ﬁ) - —-’137!1—“‘-“- . (552)
n a
n

where the asterisk implies complex conjucate. Explicitly, we have

(20 + 1)(n - |m|):]
(n + lml)l

n 1
al = 7 |

. (553)

Using the orthogonality relationship, we have

2 = [ af @) . (554)
b :

The basis of the P-N approximation is to expand the specific

intensity of radiatien in spherical harmonic according to
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‘o

o - R |
I(;,\),ﬁ,t) = Z z a, Iﬁ ,(;;~V5t)Ym(§)r ’ (555)
' n=0 m=-n _ ' n» :
where
I: (;,V,t) = f as YE*(ﬁ)I(;,v,ﬁ,t) . (556)
bn )

This leads to an infinite set of coupled equations for the
expansion coefficients IE. The P-N method consists of truncating
this set of equations by setting

Iiuo, n >N . ‘ (557)
We will see that the P-1 approximation is, in fact, the Eddington
description, in telegraphker's form, we have already discussed.
We also note that since the functions-Y:(ﬁ) are complete, the P=-N
method approaches exactness as N + =, Hence the P-N method can
be considered as- the systematic extension of the Eddington
approximation to the higher order descriptions.

We note also that the radiative energy density and three
components of the radiative flux are related to the first four

expansion coefficients according to

E=210 | | (558)
F_ = -é- [17% + 1] (559)
F, = 37 (17 -1, (560)
F_o= 1) . (561)
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'Similarly, fhe components of the pressure are linear combinations
of I and IZ LT L ’

We carry out the- details of the P-N method only in plane
geometrye. Other geometries‘are treated in a similar fashion, but
the algebraic details"aré' somewhat more complex. In plane
geometry, all of the.IE are zero if m # 0 sihce we have azimuthal

symmetrye. In this case, Eq. (555) becomes

I(z,g,u,;) = Z (2“ + 1)I (z v,e)P_(u) (562)

where we have set Ig = Ine. In plane geometry, .the transpoft
equation we are considering, Eq. (303), is

1 31w 31(n) . ‘s
T + o + ogI(y) °aB + T Io , (563)

where we have set cE = Ig. We use Eq. (562) in Egq. (563),

employ the recurrence relationship

(n + 1

w2 = Gyt 0+ ()2t o (564)

and equate the coefficients of Pn(u) to obdtain the infinite set

of equations for the expansion coefficients

1 310 311
E- -5—{—- + -a-z—— + Uan = IHTOaB s (565)
sl oI 9
2n +-1 n-1 n+l
— 3t 0 5 + (20 + 1)ol_ + (n+ 1) —5;—=20

wvhere 04 £ 0 = 0Ogo
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Let ﬁsrpbngiaérfEq.7(565j;éhdftﬁeﬁfi;sc N equations of the
infinite'sgt giﬁeh by Eq._(566)} This‘amcunts~to N + 1 2quations

in N + 2‘unknowns;.néme1y I ;Il,;..;I . Hence it 1s necessary

in order to rdloée this set to sdiggsw reduce the number of
anknowns by one. Since Eq. (562) 1s presumed to be a convergent
expansion, the I, mnust decrease with increasing n, and the
natural and simplest truncation procedure 18 to make the

approximation

We then have as the last equation in the P-N set

9X al
2N + 1 N + N N-1

¢ ot 92

+ (2N '+ 1)oLl = 0 (568)

Equation (565), the first N-1 -equation of Eq. (588), and
Eqs (568) constitute N + 1 equations in N + 1 unknowns 10,11,...,
plane geometrye. ,

As N becomes 1infinite, the solution of the P-N equations

and are the equations of the Nth order P-N approxination in

approaches the solution of the equation of transfer. However,

experience shows that even in very low order the P-N method is

quite accurate. For example, for N = 1 we have as the P=N
equations
1 810 811
-(; T + -52—' + GaIO = IH\'OaB » (569)
3 811 aIO
'E'a—t-:—'*'—a-;—'i' 3011"0 . (570)

Recalling that Io = cE and-I1 = F, these are just the Eddington
equations, Eqs. (306) and (309). It is well known that the even
order P-N approximations, (i.ee, N = 2,4,...) have difficulties
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which are mot suffered in odd order, and that ‘the succeeding even

order approximation is generally less accurate than the one lower

odd order approximation. For these \reasons, only 0dd order

approximations are used in practice, and“fon the remainder of our
discussion we restrict our attention to N odde We note that
Eq. (565) is extant in all P-=N approximations, i.e., for any N.

Since this 1is just the continuity (conservation) equation, the

P~-N- method is conservative of photons,.

The dinitial conditions for the P-N. approximation follow

immeﬂiately from the initial condition on the equation of

transfer, Eqe. (86). We have

I (z v,0) = 27 f dupP (U)A(za sH) » no= 1,2,000,8 o (571)
. :

Concerning boundary conditions, we require (N + 1)/2 conditions
on each face of the planar systeme. If we consider the left hand
surface, say z = Zgs these conditions can be taken as (N + 1)/2
weighted -averages of the exact boundary condition, Eq. (8Y%)
That 1is, we write

1 o
2ﬂ g du W_(w) [I€z,,v,u,t) = T(z,,v,u,8)] =0,

mo= 1,2,e,(3¥ + 1)/2 , (572)

where the Wp(u), arbitrary linearly independent functions, are
the weight functions, Since the P-~N approximation consists of
setting I (z,v,t) = 0 for n > N, we use a truncated version of
Eqe (562) in Eq. (572) and write

N 1
2n + 1
ngo (F=7)1, (20, v,t) [0 duw ()R, ()

1
= 21 [ dud_(u)TP(z,,v,u,t) , m = 1,2,e00,(N + 1)/2 . (573)
S m L
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Aot

: Oncg'ﬁhé 1ﬂﬁ(ﬁ)JhAV§; béén;9§;éifi§d{iﬁq;l (573) 4is the 7required
(N + 1)/2 relatidnbhips émdhg‘ﬁhe In(z,v,t) at z = =z, The
so-called &afshak. or Milne boundary conditions consists of the

choice

Wm(u) = szfl("),’ mo= 1,200 N+ 1)/2 (574)

or equivalently

v =™, om0 D72 (575)

The Marshak/Milne condition for m = 1 has the physical 3Interpre-
tation of preserving the incoming flux per unit frequeney. The
¥ark boundafy conditions correspond to choosing the weight

functions as Dirac delta functions

Wo(u) = 8Cp = up) ,  mo= 12,00 (N 1)/2 (576)

where the u, are the positive roots of the (N + 1)th Legendre
polynomial, i.e., ‘

P = 0 > um > 0 ’ m = 1,2,...(N + 1)/2 . (577)

N+1(um)

It can be shown that in the special case ¢f no incoming £flux
(' = 0), the Mark conditions are equivalent to surrounding the
gsystem with a source free, pure absorber and carrying out the P-N
calculation over all space, assuming Ij(z,v,t) to vanish at
z = =2, Similar considerations give the Marshak/Milne and Mark
boundary conditions at the right hand surface of a planar system.
The only difference is that the integrals in Eq. (573) cover the
range =1 < p < O rather than 0 ¥ £ 1, and one uses the nega-
tive, rather than the positive roots from Eq. (577). In prac-
tice, the Marshak/Milne conditions generally prove to be more

accurate than the Mark conditionse.
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‘ It should be remarked that other truncation schemes, rather
than setting IN+1(Z v,t) Qi}O have been proposed within the
context of the P-N method. What 'is‘_reauired in geweral to
truncate the infinite- set of equations is a method of relating
N+1(z v,t) to the lower expansion coefficients. This can be done
with some generality in the following way. Suppose that one
expects the angular distribution to be approximately desc<ribed by
a specified function f(z, v,u,t). For the purposes of truwcation,
we then assume that the specific intensity of radiatiom can be

represented by

. N~2
I(Z.“:H.Y) = z cn(z,“,t)Pn(u)
n=0

V,+ cd(z,Q,t)fo(Z,V,u,t)'+ ce(z)vst)fe(z»vsuot) ’ (578)

where f, and fo are the odd and even (in u) parts of £f{z,v,u,t)
respectively, and the cq4, ¢4, and cg are expansion coefficients.

Multiplying Eq. (578) by PN-I(u) and integrating over all
solid angle, we find (we assume N odd)

1
IN_l(zaVst) - Zﬂce(Z,V,t) {1 duPN_l(U)fe(zs“:u,t) . (579)

Similarly, one <can obtain an expression for IN+l(z,v,t).
Taking the ratio of these two results, we cbtain

{

-

duPn+1(u)fe(u)

(z,v,t) = 1., (z,v,t) (580)

Iy+1
[ dupg_ Cu)E_(u)

as the truncation condition. Hence Eq. (566) for n = N becomes
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— 3t ,+"5—;- {[N + (N + l)R ] \1_1}
+ (2N + oIy, =0 (581)

where Ry = Ry(z,v,t) is the ratio of integrals appearing in.
Eq. (580); The modified P-N approximation then consists of
Eq. (565), the first N-1 equations of Eq. (566), and Eq. {581) as
the truncating equation. ,

~ As an example of this type of truncation, we could choose
£(z,v,u,t) as the asymptotic distribution [see EqQ. (330)]

1

£ 2 ——
e(u) L - RZu2 ’ (582)

whera K satisfies

2K
-‘;)—ﬂzn(

i = E) . f (583)

-~

[w in Eq. (583) could also be © or w.] From Eq. (580) we then
find

1 Q (1/K)
N+1 N+1
R, = = s (584)
N7 oIgay Qe (MK
where
P (%)
Q (z) = —-I & =F (585)

is the nth order Legendre function of the second kind. This
"asymptotic” P-N approximation reproduces correct asymptotic

moments in all orders N when the specific intensity is, in fact,
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in an ésymptﬁtiéiétatégfﬂlnigd@jtlﬁﬁ;rﬁqf_N > 1, this approxima-
tion will, in ali-ﬂordéré, ‘5ccuré£éiyA‘describe the almost
isotropic transport problem. 4 “ ‘ '

One could also envision using other angular distributioﬁs,
such as those due to Minerbo aﬁd .Levermore as previously
discussed, to truncate the sphefical harmonic equations. This
procedure, 1in essence, extends the notion of flux limiters and
Eddington factors to Higﬁer order (than diffusion) approximations
to the equation of transfer.

The energy density, radiative £flux, énd pressura tensor
needed in the hydrodynamic equations are given in the P-N or
modified P-N method as

E(z,t) -_(_:1_({” dVIo(z,V,t) ’ A (586)
F_(z,t) = [ dvI (z,v,t) , (587)
o .
F (z,8) = F (z,£) =0 , (588)
1 (> o rl Y o2
P,,(z:t) =2 g av[3 I (z,v,t) +3 I,(z,v,8)] , (589)

Pyy(Zst) = Py (z,t)

1 ¢ 1 1
- = £ dv[g»lo(z,v,t) -3 Iz(z,v,t)] , (590)
pij(z,t) =0, i+ 3 o (591)
We note that
Pyx T Pyy ¥ Ppp ™ E , (592)
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" a p;ébefty true in generéi:aé discussed earlier.

G. The Discrete Ordinate (S-N) Method

] One of the appealing features of the P-N method is that it
ig in fact an entire set of approximations, which, by choosing N
large enough, can be used to estimate the solution to the equa-
tion of transfer to within an arbitrarily small errocr. Another
set of approximations with the same feature 1s tha discrete
ordinate, or S- N, method, with N again denoting the order of the
approximation. For N infinite, the S-N solution 1s 2he exact
solution to thé'equation of transfer, just as in the P~K method.

Restricting our discussion to plane geometry, Eq. (303), the
equation of transfer, is

O
_‘1; agt(:u) 4o ALGW) . oI(p) = 6B + 5 f du'I(u') (593)
=1

where we have explicitly written the integration over angle in
Eq. (593). The basis of the S=N method as applied to this
equation of transfer is extremely simple. One uses an integra=-
tion quadrature scheme to approximate the integrals over the u
(angle) variable. If we consider an N point scheme, denoting the
quadrature points by uj and the corresponding weights by wj, we

make the replacement

1 N
[ap'iCut) + 1 W ICug) . (594)
-] jnl

'The equation of transfer, Eq. (593), then becomes

1 91(w) 31(u) . % §
LM ey s o = o3 t g L Wity (593)
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To’obtainv;héf$4ﬁ_gqhétions, one meréiy'évalﬁates this equation
at the quadréﬁurefpoints ﬁi. Hence, the Nth order discraete ordi-

nate approxima;ion in plane geometry consists of the N equations

3T(n,)  dI(w,) | o N
1 i - i - s
< 5t + oy 37 + OI(ui) - 0,B + = jzl le(uj) ’
1 = 1,2,...N > (596)

for the N unknogns I(z,V,ui,t).

The N initial conditions required for the S-N approximation
follow immedigtély from the initial condition on the equation of'
transfer, Eq. (86), by evaluating the condition at the quadrature

points Uy We have

I(z,\’,ui,o),- A(Z,V,Ui) ’ 1 <1 <N . (597)

At the 1left hand face of the planar system, 8ay 2z = 2,, we
obtain the N/2 boundary conditions required (we assume N even

with an equal number of positive and negative ui) by
evaluating the transport boundary condition, Eq. {85), at the

positive quadrature points. This gives

I(zziv’uiit) = r(z£’v$ui’t) ? ui ) 0 b (598)
Similarly, at the right hand f;ge, say z = z, ve have
I(zr,v,ui,t) = r(zr,v,ui,t), Hy <0 , (599)

as the N/2 boundary conditions.
The quadrature scheme used in the S=~N method 1is arbitrary,

although it generally employs quadrature points which occur in
pairs, one being the negative of the other. This retalins the

symmetry of the exact equation of transfer and leads to an equal
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number of boundary conditions on each face of the system as just
discussed. Since the quadrature scheme is arbitrary, it can be
chosen to accurately integrate the expected angular depennence of
the specific intensity.  For example, if the angular dependence
is highly peaked around u = il; oné:can use a quadratuvre nhich
has its points concentrated near the endpoints of the 1y range
-1 <u(<l. Alternately, one could use a quadrature scheme which
would integrate exactly the asymptotic distribution. Qr, one
could base the quadrature points on an angular distribution such
as that derived by Minerbo or Levermore, as previously dilscussed.
This could be Ehought of as introducing flux limiting and/or
variaole Eddingﬁon factors into S~-N calculations. If one has no
apriori knowledge of the angular distribution, the usual choice
18 the Gauss—-Legendre quadrature scheme, in which the uy are
chosen as the zeros of the Nth Legendre polynomial, i.e.,

PN(ui) = 0 . (600)

This quadrature scheme 1integrates a polynomial 3Iin y nmore
accurately than 'any other quadrature scheme. With this choice
for the quadrature points and the associated weights it i1s well
known that the S-~N method is closely related to the P-N muethod of

one lower order (in systems with plane geometry). Many aspects
of the Gauss—Legendre S—-N approximation have been examined in
detail 1in plane geometry by Chandrasekhar in his classic text
"Radiative Transfer"”.

The energy density, radiative £lux, and pressure tensor
according to the S5~N method are obtained by again employing the
same quadrature scheme used in deriving the S-N equations to

perform the integrations over the yu variable. We have

N

E(z,t) = 2L f dv I W, I(z,v, nyet) (601)
i=]
- N

F,(z,t) = 2n g dv 121 Wou Iz, v,u,,t) (602)
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©.(603) "

- ¢’£[ 121 Wy (1 : ui)i(z v, ui.t) - - (604)

4 N

‘The other components of the radiative flux and pressure tensor‘

Loy
.- .
Ly

are_aero.'\ : R St S
o The modern S~N method in other geometries, in partieular in '

' curvilinear systems, is much more involved than it is in plane

'geometry.' Specifically, , hfiaangular 4variab1e treatment is

intimately associated with the ‘finite" differencing methods used:‘
to treat the spatial variable.- Another difficulty in geometries'
-other than one dimensional planar and spherical is problemsb
'1associated with a .two dimensional quadrature scheme to integrate

over f. N NP ' o | |

The P-N’ and S-N’ methods in some‘ sense compete with each

other in ‘that both methods are rather general approximations tov
the' equation of transfer which areA capable of giving 'sn"
arbitrarily small error. In neutron transport, the S-N method isf
more widely used than. the P-N method. ~This is primarily betause'
the' S-N method ‘is. more easily adaptable _to large digital

',computers. However, in certain geometries/the S=N method suffers

from 'a- defect not. present in the P-N method, namely the so-called

"ray effect which distorts, in a qualitative as well as a .
quantitative sense, the S=N. solution. The origin of this effect
is that the discrete rays (ordinates) may not, if they are sparse’
‘enough in - number,'sample an important region of the problem. of
course, the ray effect becomes less pronounced as N, the order of
the approximation,"is increased. In radiation-hydrodynamics,

neither the P-N nor S~N treatments have been used to any extente
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‘' staristicsl one,‘iin wﬁich individual photons ‘are. followed

P

;ik£§ﬁé successive collisions until the photon 1s _either ahsorbed
i 3 o Where the collision occurs, the
':}'collision (scattering or. ’absorption): and hé&

-.\ 2,
IY' A. . e €« .

the appropriatehdistributions.' ‘,; _‘;‘ . '_;, : 355‘;

s,

The basis”offthis sampling is’ the ‘use of random numbers..

Consider a random number £ in the interval 0 < £§ £ 1. ‘.'Th‘e.

probability for 5 ‘to 1lie between & and § + dE. 18; 1f the, number
is . random, just proportional to the width of the interval dE, and
is independent of the value of £.  For a general distribution,
with a density function p(E), ve would write

s
=

For ranwom numbers, p(E) is just a constant, ssy.p{ Since €
! “~probability, -lie somewhere in the interval

. . &y N
. o
.", ’,'..v w .,_‘. 4

-.\

e

.......

- '}Zfroﬁébili;yrpf}E lying between § and § + df = dE .  (607)
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';Carlo process, consider
transfer  _with

w

a’ source

(608)

:~<'6_°9>“

13

“4Tnde o'< s,, E g 1, e ’o < ¢ ¢! 2w _and ‘-1 < wgl, the

h ””"i;brbﬁef;“rﬁnges. ‘ Further _Eqs: }(608) and (699) " imply ,uniform
distribations in both ¢ and u, “which 15 cérrec: for an isotropic
distribution., Having chosen a direction, we need determine where
: the first coliision occuts. Let the total‘cross section in this
direction at a distance 8 from the source point be denoted by

ﬁﬁ o(s).. For a beam of photons traveling in this direction, the

uncollided photon density N(s) is given by

]
PP
L

oq(éi,exp[-,jﬁfaé(h(éi)]ds . (611)
" R - ‘

Hence the probability thef;ejseﬁfee"pﬁbﬁpe'wili make a collision
between s and 8 + ds is ‘ A
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N (365}

(613)

a T ,__“"We’. change variables from ~ the ‘:i};al‘.‘iai;'le-‘- 8 to a variadle . Egs

nogy = [ dstetsty o0 L (6l4)

SO fch ﬁfp(§5d§‘§,}ﬁlig)d€3_" | - | © (615)

[We have introduced the' minus"éign in EqQ' (615) since: 53
. decreases as s increases] We wish to compute p(E )N From
Eq. (614) we have '

= dE - -c(s)ds y ' .~'f- | ] | '1616)'

'suln together with Eq. (613)’;¢jnq; (615) gives the ..

"*;fr.,"- Y ¢ 1))
Hence choosing the distance 8 from the physical distribution p(s)
given by Eq..(613) is equivalent to choosing a random’ number in

the interval 0 < 53 £ 1 [by "Eqe (614) this corresponds to the
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‘ determined,
-3ffurther random number'E is used to determine 1f the oollisionu

‘is scattering or absorption. If E lies in the range ,9‘ .. ‘g'frf

(621).

as atseattering collieion.'and 15 £y
‘(G%Z)w?

‘l\'

g event, further random number

‘from;”'

.”
:‘ "I‘v

1eakage

]
USRI

from”‘the' éource point.

ARy RN
13

'sampling from the appropriate source and;{‘

'photons~ entering the 'system through the -

boundaries (P # 0) and non-isotropic scatrering and sources.
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- ~

S In the Monte Carlo method, the results of each collision are
Hfoallied, and from this information ~ﬁ_h'j specific intensity
‘;I(r,v 5 t) can be constructed.- If one ran.an infinite number of
"pootons, the result for I(r,v 5 t) would be an exact solution to
tﬁe equation of transfer. In practice, of course, one runs only
a,fioite number of pﬁotons; and this introduces a stat{stical
.fluctuation into the answere. Monte.Carlo codes not only produce
an answer, but generally give variance information.which gives
., some idea of the statistical uncertainty of the answer. A myriad
of schemes are in use to reduce this statistical variance. These

genetally go under the name of biasing.

. Te The Integrai‘(Forﬁal)'Solution Method.,
One could envigion solving the equation of transfer by em-

ploying the integral formulation, which is just following photons
along their characteristics. This is conceptoally very éimple.
One would pass a multitude of rays through the system, in suffi-
cient number to adequately sample all spatial regions and angular
directionss One would then evaluate the fofmal solution to the
equation of transfer. In‘steady State;'this is just Eq. (1l16),

1030’

+ &
r-rs'

;(?,ﬁ) = Iz _,H) gxp[-*£ . ds"o (¥ - 8;5)]

PN
r-rs '

4 £ B ds'Q(; - 8'5,5) exp[-:is ds“c(; -'o"ﬁ)] , (623)

"where .Q(;,v,ﬁ) 1s the total (emission plus scattering) source
given by Eqe. (109), i.e., - ‘ '

Q(z,v,8) = s(¥,v)

+ [T avr [ af S5 os(§,u-+v,§-§')1(§,v',6') . (624)
o by
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"ZfThe‘scatteringﬁzﬂ

ld havedto,be handled iteratively. In tine de-
_i;pendent problems, the formal solution to be evaluated is given by

(118). In this case, scattering could ‘be treated explicitly

'in time, ‘ot iterated for increased accuracy ‘and stability.

. Jo The Multigroup Hethod

Thus far we have discussed various approximate methods for
dealing with the angular variable. We conclude our discussion of
approximation methods by considering the frequency variable. The
generally used" procedure for handling the frequency variable in
the equation of transfer is the multigroup method, which really
‘amounts to a discretization of the frequency variable. Rather
than treating the frequency as a continuous variable, one assigns

a given photon to one of .G frequency groups, and all photons

. within. a given group are treated the same, -assigning average

properties, such as the absorption coefficlent, to these photons.

. To introduce the multigroup method, we consider the equation
of transfer with no scattering, and with an absorption coeffi-
cient % which is independent of frequency. We then have

%3—]5—(&”—?-5—)—4- 5{61@,?5) - oé[s(v) - I(v,i)] . (625)

‘According @; Eqs. (21) through (23), the radiative energy
.density, flux, and pressure tensor, the quantities of particular
;interest inf radiation hydrodynumic problems, all 'involve"”
integrals of* the specific intensity over the frequency variable.,‘
Thus it is reasonable to integrate ‘the equation of transfer,

(625), over frequency. We find, since °a is independent °£,f

frequency,

c

L2W 4 ah1cd) = o (37 ™ D] (626)

149



PP ANER

.,where we‘havETdefiﬁed;:

I(T,8,t) = £ d?I(r,v;ﬁ;i)ﬁ.- A“a' (627)
Equation (626) 1is exact, and is referred to as the grey, or one
group, equation of tranafer since all photons are treated to-
gether in a single frequency group extending from vV = 0 to v = «,

Let us again consider the -equation of transfer with no
scattering but with an absorption coefficient which depends upon

photon frequency, i.e.,

% 3£%¥x§l + de¥1(v, ) -ﬂaa(v)tB(v) - 1(v,H)] . (628)

The grey equation of ‘transfer associated with Eqe. (628) is
generally taken as, in analogy to Eqe. (626), ‘

91
at

~~

B 4 fedud) - 5 (88 10 - ud] o (e29)

Ol

where I(ﬁ) = I(r,8,::) 1s again defined by Eq. (627).  Here 9, is
some kind of mean atsorption .coefficient averaged over frequency.
If °a is allowed ‘to be a function .of space and time only, as 1is
.generally the caee in practice, Eq. (629) is an approximate equa-
tion for I(r 5 t) no matter what choice is nade for oa.. This is
leasily seen by integrating Eq. -(628) over all frequency. One
indeed finds a result 1like Eg- (629), but with the important
_difference that G, 18 a. .function of § as well as T and t. In
fact, O, must’ be defined as |

I7 av oa(v)[B(v,t) - 1k§,v,§,:)]
AR RS I > ’ (630)
& [® av[B(v,T). - I(F,v,H,t)]
o ~
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ne group‘equation-_ Of course,;
_usef ;i;iust know °a which, according to
.:ﬁ’the “unknown specific intensity. [1f the
: ~_ty were known, the radiative transfer problem,
would be solvedl.] We return lto this . point shortly. We re-

emphasize 'a';_ time,' however, that in practice Oy is uni-
' versally chosen'as independent of § which in general iuwplies an.

"approximationg }: ' _

With this introduction, ﬁe now consider the equation of.
'transfer with scattering (however, for simplicity we neglect
induced processes) and construct the more general nultigroup:
e4uations. ;i,gé; shall discuss the  utility of the nultigroup
equations, e;En though one may only be interested in one group
results . (the?specific intensity integrated over all frequency),
following our;fderivation of “the multigroup equations. The"

equation of transfer we consider is
L2108 4 e, )

C o= o (M[BY) = 1w, )] = o (I,

Ve[l abe [T avi e o (urevBirelyIeen, 8N . (631D
' .;-un , o . S o N

We divide th “frequency range into ¢ groups “with boundaries"
LV f “o - 0, i :2,...96 1, G w:~; and define the gth group spe-
g cific intensity as‘“ R : '

LoWa

RACH AN RS avi(s;v,i,e) , 1B <L6 . (632).

\)g_l

Integration of :Eq. (631) over the .gtih group yields
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: ’ - G A
by 8’1-1 8 '8 "8( ) ( R

1<g<6 , (633)

where bg is ﬁéfined as that fraction of acT“/dﬂ which 1lies
within the gth group, i.e., ' ’

v

v N
J g' dvB(v) [ & dvB(v)
v, I
by = 3 - & ‘ (634)
g g, dvB(v) -  acTh/4n

Equation (633) -is exact 'providing we define the gth group

interaction coefficients as

f’gl dvqa(v)[B(v) - I(v,ﬁ)]

s |

o, (f) = B . (635)
[ g dv[B(v) - I(v 3)] ‘ '

o (f) = BV , : (636)
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k dv ——-a (v'+v-§ 5 )I(v' 5')

vl

T : . » — . (637)
8 g'*g o, L Vot . e - . .
Doore f 8 'av!I(u',ﬁf)

The G equationa given by Eq. (633) represent the general form of

jthetmultigroup equations. ~ These equationa are coupled. through

the scattering interaction and must. be solved simultaneously,
For the multigroup equations to be useful, one must be able
to- compute or‘estimate the group constants defined by Eqs‘ (635)

‘through (637).‘ An exact calculation of these con8tants involves

a complete knowledge of the specific intensity which, of course,'

. 1s. unknown. .The underlying. assumption in the nultigroup method

is- that these ‘group constants, since they are homogeneous -
£unctionals of thes specific intensity, are relatively insengitive
to the weighting function I(r v, a st) [or B - I in the case of

. .(635)] used {n computing these averages over frequency.

-Hence one  hopes that a relatively crude estimate for the specific

intensity will lead to reasonably accurate group constants.  Asg
the group width becomes smaller, of course, the group constants
become increasingly less dependent upon the estimate made for
I(r,v 5 t)e . This is the reason that a multigroup formulation of
the frequency variable is preferable to -a one group, or grey,
treatment even though the ultimate goal may be to compute ‘one
group results (energy density, flux, and pressure tensor).

:‘To evaluate the group constants involving the scattering

Akernel, Eqs._(636) and (637),Va reasonable choice for I(r,v 5 t)i

would be the Planck function .at the.’ local material temperature.
This ensures correctness as one approaches equilibrium, i.e., at

‘thermodynamic equilibrium the specific intensity is in fact given

’ by the Planck functione Away fronm ‘equilibrium, the only justifi-

cation for the use of ‘the Planck function is8 that the gcattering

cross section is a relatively smooth function of frequency, and
hence the choice of the weighting function in these group
constants i1is not crucial as long as a reasonable function is
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f?used.;ﬁ In the case Of Oag,.the averag, absorption coefficient;

"Jmore care should be taken.w Absorption coefficients encountered

“fin practice are generally complex and widely varying funqtlions of
'frequency, ‘and ' the use of different weighting functions can lead
‘to quite different results £6r" Uag' In. practice, Jag 1s generally

,taken as-either a group Rosseland or group Planck mean.

"The Rosseland mean, similar to that introduced earlier [see

- Eqe (485)] followc- from the' assumption that the specific

intensity is given by the equilibrium diffusion approximation,

B(v,T) - I'(';,\‘,ﬁ,t) = _;1. - aBg; 2 1) 5 61‘(1' t) (638)
‘ : : o(r,v,t)

where 0 = g + Oge Use of .this result in Eq. (635) ylelds a
Rosseland-like result ‘

Vg dg'da(v) 3B(v,T)
a(v) T
g=-1
o =B — (639)
ag ('8 4y L 2B(%,T) '
- -TIE)) oT
v
g=-1 .

The Plznck mean is appropriate'in the case of time independent
‘radiative tranéfer in ‘an optically thin, enission dominated,
,system. Once can easily shoﬁ that in an'optically thin system,

the’ specific intensity I is. small compared to the Planck function.
'fB.' “That’ is, in this case we havc '

#(t,T)_-’I&;;Viﬁ) "B(;}is,‘pl | “j.:. | | (640)

'andqu.r(635)'then gives

dvaa(viB(v,T)

an ‘—sc

o f - o . (6[‘1)
ag fvg .o

v
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-average nerally referred to as - the gth group‘
\~or“P1anck‘averaged absorption coefficient. ' '
As the aboue“discussion indicates, the use of the Rosseland'
‘andi Planck mean fabsorptionh coefficients' is only strictly
'appropriate in limiting circumstances. Nevertheless, one or the
‘other mean 1s generally used in the multigroup method, For
realistic absorption coefficients, these two means can differ by
an, order of magnitude or more, and thus the results of the multi-‘
’ group method can vary widely depending upon which mean 1is ysed,
In- truth, neither mean is correct {in general. For most problens
of - radiation hydrodynamics, experience indicates that the uge of
the Rosseland mean is the more accurate of the two. “In fact,
(639) is- often "approximated by arguing the 3B/3T is ‘suf-
ficiently slowly varying over a group, so that Eq. (639) can be
replaced by '

77 ‘ oa(v)
N O
Sg = — (642)
[7 o

\ "For completeness,‘ weA give’ expressions for the radiative
energy density, radiative flux, and radiative pressure temnsor in
the multigroup approximation. _ From Eqs. (21) through (235-and
Eq. (632) we have ‘u—< - .‘ |

..ﬁ ,:':iﬁ;?z G. . - . - T
LLEG,e) =L dﬁ: @, 5 ) S (643)
) c g=1 u' ) )

Y ’ G z . '

F(f,e) = 1 | 4551 (r 5 t) . . (644)
gfl b

g 1 G N '

B(r,e) =2 ¥ [ atddr (%R0 . (645)
¢ g=l1l un &
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The multigroupascheme is'combined with one. of the &ngular?
fapproximations previously discussed _together with some kind of -
treatment in space and time (finite difference, Monte Carlo,

' "formal solution, etc.) to yield a practical calculational schene

for radiation- hydrodynamic problems.

IV.. THE INTERACTION OF THE RADIATION FIELD WITH MATTER

Thus far we have discussed the equation of radiative
transfer and the equations of radiation hydrodynamics in various
'forms., For the most part, all of these results followed fronp the
simple notion of conservation of photons, mass, momentum, and-
energy on a. macroscopic level. The underlying physics of
radiative transfer {is contained in the absorption coefficient
°a(“)n the scattering kernel wgg(v'sv, e 5') and the spontaneous
emission source S(V). We now give a very brief discussion of
this aspect of radfative transfer. The only topic we treat in
any detail 1is Compton scattering from free electrons.

A, Absorption,and Source
. "The calcu'lation of the absorption (and scattering) coe-

fficient and ' the source function involves two conceptually
distinct steps. ~In the first place, assuming LTE, given the’
‘temperature, density, and atomic composition of a plasma, one
:'requires a quantitative statemenf .concerning the population of
the various ionic species- present. In addition, for each . ionic}
,species ‘one needa the population of each quantum energy state.

Secondly, given the populations one requires the probability
that a photon will induce a transition from one quantum state.to
another. This. requires a study of atomic and molecular processes
together with the quantum theory of radiation (quantum electro-
dynamics). '

The mechanisms of absorption of radiation by matter are
bound~bound (1ine) absorption, bound-free (photoelectric
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Lbsorption,A and free-free ;(conpiﬁu m) a sorption.;'f In line

"iynebsorption, an electron in. a bound state is»excited to another

,fbound state .of higher energy by the absorption of a photon. The
5;Efrequency of the absorption line is given by Bohr's relationship
" hVgp = Ep = Ep, where Ey and Eyp are the higher and lower energy
efetee, tespectiiely. In.photoelectric absorption, the electron
is ejeeted ‘from the atom or ion ~and. goes . into one of the
continuum of free energy'statee. Photoelectric absorption occurs
whenever the energy‘of the incident photon is greater than the
binding energies of the electrons of the .atomé or ions. In
free-f;ee ehsorétioq; an electron in e free state. nakes a
transition to -another free state of- highef energy with the
absorbtion of a photon. This is shown schemetically below.

continoum

20
E, :
M
Ty
. Ep eiwm sttes
Ey

qround sfale

Atomic energy Jevels and transitions.

157



_____

(Lines much narrower than shown)

g. l
S N,
i
2 { } K~edge
. - -
= I :
] I
a ] l
S ] { - ’ .
2 BRE

hy

conlinuum
Comparison of absorption processes. :

(Lines much narrower than shown)

' - he
10 keV : 100 keV

Total absorption coefficient.

159



-Efif“Scatterngf.,.\ﬂ

S ':'" P -
e s AN .2,

. The most important scattering process in radiation hydro-&
,idynamic problems:,is‘ scattering “from free electrons, called.'

Compton scattering- In the low frequency limit, i.e., when

hv

n_c?
o

K1 o, | (648)

where nocz = 0.511 MeV (m, is the rest ‘electron mass), <Compton

gcattering limits to Thomson scattering, given by

. . re ) : A
o (v+v',E) = N z= (1 + E2)8Cv - vy o, , (649)

where 5.5»303', N is the electron density, and T, is the c¢classi~

cal electron rad;us

. ' | ' " (650)

Integtation of Eq. (649) over all v' and .solid angle gilves the

scattering cross -section as:

(o= [ravt | afte g = $E el - G berne) - (31

" We note”threefcharacteristice of Thémsqn.scattering:‘
1. It is~cohefent‘(no frequency change upon ‘gcattering);

2. It is symmetric in the fotwafd and ‘backward hemispheres

of the scattering angle;
3. The scattering cross section is independent of frequencys
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tEquation (651)518 thefﬁlassical result of scattering from free
; electrons afterﬁavereging over polarization states.
. The quantum mechanical result for the scattering of photons
by free electrons is given by the Klein-Nishina fornula. As 1in
the classical tesult, the scattering kernel actually depeunds upon
the state of po;arization of the incident photon. If one
avereges over polarization states (assumes natural, unpelarized,
1ight), the scattering kernel is given by, for electrons at rest,

2 1 + E2
(o]
aa(vw',z).-,n 5 .

[1+vyQ - 8)]2

(1 + E2)[1 + v(1 - §)]

\Y
'.{1'+ (\" "1+ Y(1 - ;.)) » (652)

where Y is a dimensionless frequency

y =2, (653)
mocz

The ‘Dirac delta function in Eq. (652) states that, given an
initial photon frequeney, the scattering angle and final photon
energy. are correlated. This correlation results from simple
conservation of enetgy and momentum in the scattering process.
We see: ftom the argument of thn delta function that hv', the:
. final energy, 18 always less than hv, the initial energye :Ihiéfr

.energy- difference 18.'the. recoll energy given to the free ;v.;

electron. . ‘

Another widely seen form of 'the Kleian-Nishina formula -
follows from Eq. (652) by changing the delta function from one in
v' to one in E. Suppressing the algebraic detail, we find
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-+ 8(g -~1 + - -J , (654)

.with vy given by Eq. (653) and

hv!

2
bugN o
o

Y = . ' (655)

A third.fqrm for og(v+v',E) follows vefy simply from Eq. (655).
This 1ig |

T e2
r
o (vev',E) = N-—--—- [1+ 82 + yyr(1 - £)?]

RICEREES -3 . (656)

For low inéideﬁt energies, leee, v <K 1, it is sensible to expand
Eq. (652) in powers of Y. To second order, we have

3
r
o (v+v';e) - wg® (L 52)[1 - 2901 4 y2 {28 ‘4:352’]
» 1+ g2

Tes(v S V1 - vC = B) +v2(1 - ©)2]) .- (657).

'Sett;né Yy = inqwﬁq.~(652),'we obtain

1.2
0 (Vv E) = N 5= (1 + 52)6(v' -v) , (658)
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;whi just ,tﬁe"classical Thomson scattering kernel [seejL:
-15542;(649)] Integration of Eq.. (652) ‘over all &' and v giVes the-f
) scattering cross section os(v). We find ' : .

: 3Ny, ' « ,
0(v) = — T {(FFNFEF - a1+ 2]

1 + 2y
44l + 2y) - —i—i—i”—-;} , (659)
(1 + 2y)

where uih is the Thonmson nicroscopic scattering cross section

. 2 ' (.
u B opme T B emmr——— (660)
Th 3 7o 2.4 . : -
. 3m°c :

Correct to second order in Y, Eq. (659) gives

o (v) = Nup, (1 - 2y + 28 42) . ©(661)

For small Y,‘Eq. (661) shows that'the‘Compton scsttering cross
section is smaller than the classical Thomson value. It can be
ghown from _Eqe (659) that this inequality 4is true for all ¥
(i.e., for all incident photon energies).

o8y

. b Inverse Compton Scattering :
The Klein—Nishina ‘formula describes Compton scattering from*t
free electrons at - rest, and exhibits the. characteristic that;

.photons cannot gain energy upon scattering (this is the so-called:f.
'Compton shift). _If the interaction 1is between a photon and a

moving electron, however, the electron can impart some or all of
its energy to the photon and increase the photon's. frequency upon
scattering. Such an event 18 often referred to as inverse

Compton scattering. We now derive the scattering kernel in the
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The elements of the derivation,
" howe; A ‘Etoi the more general case of" photon
.5fscattering fr mJan arbitrary distribution of moving particles.
R Before proceeding analytically, it is worthwhile to briefly
discuss the nature of the scattering kernel expected {in  thig
case. The kernel will have three rather distinct Chnracter-
tistics.z In- the first place,'a - photon will, upon Scattering,
':have its wavelength increased due to the usual Compton shift
associated with scattering from an. electron at rest. Secondly,
it will undergo broadening due to the classical Doppler effect of
scattering from a. distribution of moving electrons. Finally;
there will be a reduction in the wavelength upon 8scattering due
‘to the relativistic éffect that the - Photon density will appear
more intense to .an electron moving toward the photon than’ awvay
from it. This -last ‘effect, " the blue shift, 1s needed to
“balance the Compton red shift, for, if black body radiation at
‘a certain temperature scatters from a Maxwellian gas of free
electrons at the same temperature, the scattered radiation nust
have_ the - same distribution 1in. wavelength as the incident
~radiation.‘ A ' - o
' Since the Maxwellian distribution is the thermodynamic
equilibrium distribution for the electrons, the scattering kernel
as(v'+v ﬁ'-ﬁ) must also satisfy the detailed balance condition.
'This condition states that in complete thermodynamic equilibrium
i theﬂ‘number of photons which -scatter. from dv'dﬁ' about vt 5"to

f’ﬂvﬁﬁ must equal ‘the numbex scattered from dvdﬁ
Quantitatively, this candition takes the form

A}MSJ;[l:ficégtyj[éhté]oB(ui+v,§'oﬁ)B(V')/hvl.
- .‘["1 +;ezm-)/z‘ms]'.-,s<m-,§.§')s<;)/gv , - (652)
where b(v)nis theﬂPlanck function given by
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Equetiqguf(GGB)‘,relétes,”the scattering kernel, at a given
scattering angle, to the kernel with the frequency variables v
and V' 1ntercha1ged, at the same angle. Explicit use of Eq.
(663) in Eq. (662) yields |

os(v'+v.§'-§)w(v'>/hv' = o (vsv', Rediyu(v)/ay (664)

where W(v) 1s the Wien approximation to the Planck function-.

Aside from a normalization, we have

W(\’) - v3 -hv/kT . ) ) (665)

" This result can be interpreted as the detailed balance condition
in the absence of induced scattering and shows that the neglect’
of .these induced terms in the scattering description leads to the
Wien law, rather than the Planck function, as the equilibrium
distfibotion of the scattering operatore

' To compute the. ‘scattering kernel we have just discussed, ve .
consider a frame of reference in which a group of electrons is at
reste. We call - this the e frame and subscript all quantities in,
this frame with an e. We take these electrons to have a densityi.
Ne 1n this frame. If the ‘unadorned frame noves with velocity’ r%ﬁi
with’ respect to the e ‘frame l\go that, -as observed from the:i

unadorned frame, the . electrons have velocity v) we have fromf!

(240).

a;gs;;;;a+av; ;i%;.o (v, #v} 5 +§ ') N '. | '(seejff
where

D ) 1 - ¥/ ;5 D' o= 1'- arev/e . (667).
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2“:[N6t§{tﬁéiph nge: ofﬁéiéﬁfié EqQe T'667) as compared to Eqs. (229Lf”
and;’ (230)*; beeaus ".h::‘; ;
| velocity -v with 'respect-to the e- frame._ .The e frame hevre is toi
be identified with the zeto frame in Eqs. (228) through (241) L
In the e frame, the scattering kernel °se(Ve*“e'§ *ﬁe) is just
the Klein-Nishina formula, -Eqs (656), “with & = et and a11
quantities subscripted with ~an e. The independent variables,
frequency and angle,‘transfotm as, from Eqs. (231) and (234)

e = ADV ., - : (668)
v to= ADVY . ,"' | (669)
L - Bl = (1= BeAnZDY (670)

with D and D' given by Eq. (667) and

A= (1= v2e)y MR | (671)

Also, due-tofthe Lorentz contraction, the electron density in the

unadorned f:eme‘is given by
N = ANe‘i% ; i : S (672)

iwith A given by Eq. (671).*3Cbﬁbining_all of .these results, we
obtain IR - oD ' U

§,2~ . 'AD AD'y
g (v+v' §+§ ) = 317; 6(5 -1+ %7 -‘——-) .

oo

ETIPR TR C S 116 TN 41 B (T D
A2DpD! A2DpD!
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where E - 5 5' AR : R ,
Equation (673) isaf" scattering kernel corresponding to all
electrons moving with a velocity v.{ To account for the fact that
tie electrons have a velocity distribution (namely, a Maxwellian)

as seen by the observer- in the unadorned frame, we replace N in

(673) by

N+ NEQVIAV o S (674)

where £(v) 1is the isotropic ‘Maxwellian distribution function

normalized according to
. -+ T c ' : .
[ avE(v) = 4m [~ dvwv2g(v) =1 - (675)
o - :

and 5ntegrate the resulting expression over all V. [We note that
since the Maxwellian is isotropic, the distribution function
depends only upon the speed V rather than the velocity v-] This

gives
Ne2 . ‘
o (vv!,E) ‘.i?% f dvf(v) s(a -1+ = *D AE ) .
' (1 - 2 Y
{1+ [1__ (1 E)] + yy'(1l - &) } . (676)

._ngng;.;.‘. ‘A2pD*
as the scattering Akernel' describing scattering from free
"electrons of density N,'and with an isotropic velocity distribu-
tion f(v). In writing the left hand side of Eq.,(676), we have
anticipated the fact that this kernel will depeund only upon
E = ﬁ 5" rather than 8 and & .separately, gince the electron
distribution is isotropice :

To compute the (relativistic) Maxwellian distribution of
free electrons, Wwe use the fact that v(p), the distribution
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"“ﬁdistri ution ﬁf;g;«;'. - ?3 ;“f;%§::~.*" :

where C is a normaiization constant. To transform from ¥{p) to
£(v), the distribution function per unity velocity, we need
uintroduce the Jacobian of the transformation from p to v, fee.,

Jt§;¢) f>5§r%% . . B (678)
Sincei
p = moiv B | (679)
and:
Bemgetr , | | | (680)
. aé find:
ftvf,f,c;l§ exp -'(aocz}/tT) - . | - (681)

fwhere C' is another constant "and as oefore, A 1s". the Lorentz"
'Tfactor given by Eqe- (671)., If ve demand that £(v) be normalized~
'to have an 1ntegra1 of unity according to Eq.'(675), the constant

C' 18 easily evaluated. Our final result for the normalized
Maxwellian distribution is then‘

§ =mgc2A/kT ,
£(v) = =2 . : (682)
: 4ﬂckTK2(moc2/kT) '
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: where Kz(z) is the modified Bessel functioné f{the second kind of
: order two, and mo is the rest mass ot the‘electron- o
Performing the triple integral indicated in Eq. (676), with

f(v) given by Eq. (682), gives ‘the scattering kernel for Compton
and inverse Compton scattering. One of these three integrals can

be petformed analytically because of the presence of the delta
function. The remaining two _integrale _must be evaluated
numericallye. The Legendre moments of this scattering kernel are
.defined in the usual way as ' ‘

,asn(v+v') - ;n jl dgP_(E)o_(v+v',E) . (683)

Typical results for these moments are shown in the *following
figures: -
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The Fokker-Planck Treatment Of‘Compton and Inverse Compton
'ZScatterigg f”' ) Bt S R i

-The scattering kernel {fb?f Compton iand inverse Conpton
effects just derived, while accurately describing the physics of
photon scattering from a Maxwellian gas of free electrons, is
rather complex in that is defined in terms of a multiple Integral
[see Eq. (676)] In addition, the use of this kernel in the
equation of transfer introduces further fntegrals over frequency
and angle [see Eq. (147) ]« We now_describe a simplification of
this scattering description which leads to the elimination eof all
integrals defining the scattering kernel as well as the integrai
over frequency in the equation of trensfer. The assumption
required to achieve this result ithe Fokker~Planck approximation)
is that the -electron ~temperetures and photon frequencies
(measured as energies) are small compared to the rest enexgy of
an electrons | |

In order to effect this simplification, we first expand
I(V',ﬁ') in Eqe (147) in a Taylor series about vt = v, f.e.,

10,8 = ] -,-1,-,-3—3—(1’—3—)- (vt =W . (684)
. .n-O avt

Inserting Eqe. (684) into Eqe. (147) and integrating term by term

over v', we obtain : .

L2100, fugre, B - g’;éw_[m) - 100, )]

/'-

4] afr zo N (v, ot v LIJ_J_J- - 4 (i)
Lix n' .

+ €% 1¢v,8) [ ade 2 M_(v, 5 5') n i_liﬁeﬁll ,  (685)
2hv3 ym n=0 .

where we have defined

17:



heg(vy w [Tavr f TalVaECene Bl LT T (ese)
S ' . 0. i Q.'n’"' . "T-f‘{:‘: ’ -;5*,;"‘5:‘3_‘ v 1 .. . .

| N OB = g [T e g (B
) t o ’
M, (v, 800 '~%T'£ dvt (2—-)

. o, (v'+v 4. ﬁ') - (—T) cé(v+v',§0§')] + (688)

v'

The formal Taylor series expanéibnA has converted the integral

'operator in frequency in Eq. (147) into an infinite order
differential operatore The usefulness of this procedure is that
for small electron temperature h

kT
m c

]
)

K1 , (689)

and small photon energies

Y = hY

K1 , - ‘ : ' (690)

mc2
(o]

ithis infinite order operator effectively truncates itself to one

"f%of finite order.‘ In- particular, to first order in a and Y, we

P

g:fhave the ‘explicit results

“‘ios(v) - th:(l - 27) . | o . o j (691)
N (BB = o [ =y + 200 + ey - da)

+ (#ef2 = v - 6a) + (BB v+ 4a)] ,  (692)
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1 og 1 - D (DT S IEEO ]10r2a) , (693)
N, Bl =2 o [1 - (§;§') 4'(§3§33? - @A ), (694)

16y Th

M, (v, of0) = - —3— o, [1 = (B 5') + (ﬁ 02 - @A) L 695)

My, 8el) = oo (1 - (@l + @l - (@ED )2 o (e96)

Here %rh is thexThompéon scattering cross section given by

- 87 .2 :
OTh 3 ’ Nro ° N (697)

All of the other Ny(v) and My(Vv) are of higher order in a and
Ys .- Introducing these results inte Eg. (685) and employing a
somewhét more compact notation, we can write the equation of

transfer with séattefing described to first order in a and Y as
%.azggLig + fed1ev, ) = o2(v)[B(V) - 1(v,B)]

1 - 27)1(0 ﬁ) + 0

¢ i dﬁ' z (2n )p (5 s 1(v, 5 o)
Th L Th ba n-O -
Pg; ' -
Th 2 .
YI(v ﬁ) 1 -V =] e
TToT gy (1-v3) -
S a1 = (e + GeEn? - @A, A (698)
hw .

Here Pp(z) is the usual nth order ~Legendre polynomial and the

scattering operators S, are defined as
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(699)

Rl -y B el - e B (700)

PRN P I TN PN TS L

55710 [1-v(1 = vi5) - al6 - 2v 55 - v =3)] (701)

"g .-2_ [1(1 - v-——] + a(4 + 2v == = v2 22 =—]] (702
3. 70 av EYT LA )

Equation (698) is the result of the formal expansion of the
scattering operator to first order in « and Y. We see that the
integral operator in the exact description of scattering has been
replaced by a second order ‘'differential operator. It can be
verified by ‘direct substitution that the small a and Y expansion
‘has not destroyed the equilibrium solution of the scattering
operetorp That is, vith the induced (quadratic in I) scattering
terms retained, the equilibrium solution of Eq. (698) 1is the
Planck function,-and with .the neglect of the induced terms the

7 Wien- distributien, Eq.~(665), is the equilibrium solution.

Equation’ (698) _can Dbe simplified substantially without
'introducing ~any further assumptions. A straightforward way to
effect this simplification is to consider Eq. (698) projected
: of a s herical harmonic function space.

_‘:ork in pJane geometry (the arguments are

(nonlinear terms). : We then have from

A (698), generalizing the Legendre polynomial expansion which
‘Jed to Eqs. (565) and (566) to anisotropic scattering, '

'l’an‘ BIi
290, 1 ' -
< + + oa(lo  4uB) + o

TS 3z -2y - SO)IO = 0 , (703)

7h (1
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I R Y
Cp2ntlyom T T sl n+1

o4 (20 Dol e (1= 2y - 5] =0,

o ar 31 31
. ¢ 2n+l n a-1 n+l
~( c ) 3t + 9z + ‘n + 1) oz

"+ (2n + 1)[0' + o, (1 - 2)]1_ =0 ,

Th(

n>4 , (705)

where

1 . .
In = 2% I du?n(u)l(z,v,u,t) . (706)
-1

We focus our attention on the scattering terms in Eqs. (704)
through (706). In Egs. (704) and (705) we make the replacements

1 - 2y --Sl) + 0

Oy Th °

DV S - - S.) '2;” ’
e Ol S0 T 8) T Y O

ZEFOTh(l‘f 2y ~ 33? + ?Th -

O (1= 2y) > e e 707
Oqpll = 2D gy (707
.The justification is that each term on the left hand side of
Eq. (707) has a dominant zeroth order (in Yy and a) term, which we

’ fétain, and first order terms, which we neglect, compared to the
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3_1_5_;3_,_’:5_ + 5 v‘uv 5)_- '- o'(v)[B(v) '1(6,’5)']

' they can’ be neglected in all . but t:he zerot:h alnguliat
the ‘equation of transfer, just as we neglected_all

A

"terms ‘of , _order .a__:
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-——-f }fdﬁ [ 2 _3____ + (Y - 2a)v + y]I(v 5') _

3""';;{:] dﬁ'r.(v 5') f dﬁ“' S SRR EE S

i ;: ,l'"l ‘ - “' - . “ 3 - . .' ,‘ » )
R [1 = @ed) -+ (Relin® = @711 = v 55)T(v &)y (710)

u"{ chich s simpl}fied but apriori Jjust as accurate forn of

o Eq. (698).ug . ﬁarticular, Eq. (710) contains far fewer scatter-'
”j 15§Qterms than'accs Eq. (698), and the terms which account for

T {q&é§gy, ' the. scattering interaction,l i.e., fcﬁége'
’prpﬁbftional tcnq"and Y, are isotropic in Eq. (710), wheteas thcy

ﬁaéﬁiﬁgly. (698)"' Since the zeroth angdiar

ére identical,

e e {.-
P 0L
‘?,r:..r.. P s'w"-

e".‘;?'l e
x4 4‘; !

32 3u0ys,
e
S
(’ .‘ 2
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