Nuclear Weapons

Misconceptions and the Spread of Infectious Disease

06.05.14 | 5 min read | Text by Brittany Linkous

New and improved medical treatments for infectious diseases are vital to improving global health security; however, public education is equally important. Myths and misperceptions regarding infectious diseases have detrimental effects on global health when a disease outbreak occurs. While it may seem that this problem is isolated to remote regions of the developing world, neither infectious diseases nor misconceptions regarding them are explicitly confined to certain areas.

Outbreaks can be highly disruptive to the movement of people and goods, often leading to increased regulations and restrictions on travel and trade to reduce the potential for further spread of disease. The Severe Acute Respiratory Syndrome (SARS) epidemic in 2003 was but one of the numerous examples in which international travel was disrupted. The disease quickly infected thousands of people around the world and disrupted national economies. Due to the rapid transmissibility of SARS, the World Health Organization (WHO) issued a travel advisory in effort to reduce the international public threat. In 2001, the United Kingdom experienced a detrimental hit to the agricultural sector as foot-and-mouth disease spread throughout livestock. Because of the highly transmissible nature of the disease (which affected cattle, pigs, sheep, and goats), the government banned all exports of live animals, meat, and dairy products in an effort to mitigate the spread of the disease and on February 24, mass slaughtering of pigs and cattle began. Later that same year, the tourist industry estimated that businesses lost nearly £250 million ($421 million U.S. dollars).

In the developing world, pneumonia, diarrhea, malaria, measles, and HIV/AIDS are some of the primary causes of death, especially among children. This is in part attributable to socioeconomic factors that prevent people from having access to routine health services and immunizations. Poor nutrition and unsanitary living conditions also place people at-risk. In Africa, the death rate among children from measles, a viral respiratory disease, has reached an average rate of one per minute. Measles weakens the child’s immune system, rendering them susceptible to further fatal complications such as diarrhea, pneumonia, and malnutrition. Yet, in the developed regions of the world, measles is commonly treated through immunizations.

Tetanus, an infection caused by the bacteria Clostridium tetani (which is ubiquitous in the soil), is common in developing areas that continue to practice unsanitary medical techniques during procedures such as child birth, circumcision, and use of contaminated medical bandages during such procedures. While proper sanitary resources are scarce in these regions, it is evident that the lack of supplies is not the only cause of disease transmission as proper sanitation techniques could have mitigated transmission. Due to the lack of education and misinformation regarding public health, sanitation, and the mechanisms of disease transmission, the spread of infectious diseases like tetanus continues.

Developed countries are also susceptible to infectious disease outbreaks despite modern medical advances and technology. Disease outbreaks in developed regions have been due in part to the misconceptions of vaccines and anti-bacterial drugs that have been used to deter the spread of infectious diseases. While some individuals have the perception that antibiotics are a “cure-all” drug, their effectiveness is only on infections caused by bacteria, not viruses. When improperly used (for example- taking when they are not needed, ingesting the wrong type of antibiotic or one that is not of the proper dose), the bacterial cells that survive can result in reinfection or the emergence of an antibiotic-resistant strain of the bacteria. This was evident in the recent reemergence of pertussis, also known as “Whooping Cough,” in the mid-1970s when Great Britain, Sweden and Japan reduced their usage of the pertussis vaccine as there was a common fear of vaccinations. The effect was immediate and drastic- there were over 100,000 cases and 36 deaths in Great Britain, 13,000 cases and 41 deaths in Japan, and 3,200 cases in Sweden. The United States witnessed a similar outbreak in the northwest region of the country in 2012, when over 17,000 cases emerged shortly after an increased rate of vaccine refusals for pertussis. While no vaccine is 100% effective, it is evident that popular misconceptions regarding infectious diseases and their spread can have detrimental repercussions on the populace and need to be addressed head-on.

Education, early detection, and access to are all essential in containing and preventing the spread of disease in a globalized society. Myths and misconceptions have hindered the effectiveness of vaccinations, as individuals have become skeptical of their effectiveness. However, vaccinations can drastically reduce the chances of contracting many diseases. Additionally, developing and utilizing programs that educate the public regarding the implications of infectious diseases and treatments pertaining to them, the spread of disease is likely to be significantly reduced.

Infectious disease outbreaks are a significant threat to global health security and thus have the potential to impact nearly every facet of daily life. Even in an era of medical advancements, increased sanitary practices, and knowledge of microbes, infectious diseases are still prevalent throughout the world. While having better medical practices and medicines available is beneficial in combating the transmission of infectious diseases, there is no substitute for better public health education.

U.S. National Library of Medicine. “Severe Acute Respiratory Syndrome (SARS).” Last Modified Jan. 28, 2013. Accessed March 20, 2014. http://www.ncbi.nlm.nih.gov/pubmedhealth/PMH0004460/

Eco Health  Alliance. “7 Common Myths About Pandemics and New Diseases.” Last modified June 27, 2013. Accessed on March 19, 2014. http://www.ecohealthalliance.org/blog/99-7_common_myths_about_pandemics_and_new_diseases

BBC. “Foot-and-Mouth Crisis Remembered.” Last modified February 17, 2011. Accessed on May 13, 2014. http://www.bbc.com/news/uk-england-12483017

UNICEF. “Immunization: Why Children Are Dying.” Accessed on March 19, 2014. http://www.unicef.org/immunization/index_why.html

Medical News Today. “What is Tetanus? What Causes Tetanus?” Last modified Sept. 4, 2009. Accessed on March 19, 2014. http://www.medicalnewstoday.com/articles/163063.php

Mayo Clinic. “Antibiotics: Misuse Puts You and Others at Greater Risk.” Last  Modified 2014. Accessed March 20, 2014. http://www.mayoclinic.org/healthy-living/consumer-health/in-depth/antibiotics/art-20045720

Koo, Ingrid. About.com, “The Truth About Antibiotics.” 6 Nov. 2008. 6 Apr. 2014. http://infectiousdiseases.about.com/od/treatment/a/antibiotic_myth.htm

Center for Disease Control. “Some Common Misconceptions About Vaccination and How to Respond to Them.” Last modified Feb. 18, 2011. Accessed on March 19, 2014. http://www.cdc.gov/vaccines/vac-gen/6mishome.htm

Forbes. “Anti-Vaccine Movement Causes The Worst Whooping Cough Epidemic in 70 Years.” Last Modified July 23, 2012. Accessed on March 19, 2014. http://www.forbes.com/sites/stevensalzberg/2012/07/23/anti-vaccine-movement-causes-the-worst-whooping-cough-epidemic-in-70-years/

Mayo Clinic. “Infectious Diseases.” Last modified    Jan. 23, 2013. Accessed on May 23, 2014. http://www.mayoclinic.org/diseases-conditions/infectious-diseases/basics/prevention/con-20033534

Brittany Linkous is a graduate of King University with a double major in Cellular and Molecular Biology and Political Science and History, and a minor in Security and Intelligence Studies. While at King, she served as Executive Officer of the King Security and Intelligence Studies Group and Executive Editor of the Security and Intelligence Studies Journal. She also interned in Washington, DC, at the William J. Perry Center for Hemispheric Defense Studies at the National Defense University, and the Federation of American Scientists. In the fall of 2014, Brittany will be entering the Biodefense Program at George Mason University.