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EXECUTIVE SUMMARY 
This study centers on how computer-based decision procedures, under the broad umbrella of 
artificial intelligence (AI), can assist in improving health and health care. Although advanced 
statistics and machine learning provide the foundation for AI, there are currently revolutionary 
advances underway in the sub-field of neural networks. This has created tremendous excitement 
in many fields of science, including in medicine and public health. First demonstrations have 
already emerged showing that deep neural networks can perform as well as the best human 
clinicians in well-defined diagnostic tasks. In addition, AI-based tools are already appearing in 
health-oriented apps that can be employed on handheld, networked devices such as smart 
phones.  
 
Focus of the Study.  
  
U.S. Department of Health and Human Services (HHS), with support from the Robert Wood 
Johnson Foundation, asked JASON to consider how AI will shape the future of public health, 
community health, and health care delivery. We focused on technical capabilities, limitations, 
and applications that can be realized within the next ten years.   
 
Some questions raised by this study are: Is the recent level of interest in AI just another period of 
hype within the cycles of excitement that have arisen around AI?  Or would different 
circumstances this time make people more receptive to embracing the promise of AI 
applications, particularly related to health?  AI is primarily exciting to computational sciences 
researchers throughout academia and industry.  Perhaps, the previous advances in AI had no 
obvious influence on the lives of individuals. The potential influence of AI for health, including 
health care delivery, may be affected by current societal factors that may make the fate of AI 
hype different this time. Currently, there is great frustration with the cost and quality of care 
delivered by the US health care system. To some degree, this has fundamentally eroded patient 
confidence, opening people’s minds to new paradigms, tools, services. Dovetailing with this, 
there is an explosion in new personal health monitoring technology through smart device 
platforms and internet-based interactions. This seemingly perfect storm leads to an overarching 
observation, which defines the environment in which AI applications are now being developed 
and has helped shape this study: 
 
Overarching Observation: Unlike previous eras of excitement over AI, the potential of AI 
applications in health may make this era different because the confluence of the following three 
forces has primed our society to embrace new health centric approaches that may be enabled by 
advances in AI: 1) frustration with the legacy medical system, 2) ubiquity of networked smart 
devices in our society, 3) acclimation to convenience and at-home services like those provided 
through Amazon and others. 
 
Findings and Recommendations: 
 
Overall, JASON finds that AI is beginning to play a growing role in transformative changes now 
underway in both health and health care, in and out of the clinical setting. At present the extent 
of the opportunities and limitations is just being explored.  However, there are significant 
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challenges in this field that include: the acceptance of AI applications in clinical practice, 
initially to support diagnostics; the ability to  leverage the confluence of personal networked 
devices and AI tools; the availability of quality training data from which to build and maintain 
AI applications in health; executing large-scale data collection to include missing data streams; 
in building on the success in other domains, creating relevant AI competitions; and 
understanding the limitations of AI methods in health and health care applications. 
 
Here we provide the JASON findings and recommendations. Discussion and elaboration on each 
of these is presented in the text.   
 
1. AI Applications in Clinical Practice 
 

Findings:   
● The process of developing a new technique as an established standard of care uses the 

robust practice of peer-reviewed R&D, and can provide safeguards against the 
deceptive or poorly-validated use of AI algorithms. (Section 2.3) 

● The use of AI diagnostics as replacements for established steps in medical standards 
of care will require far more validation than the use of such diagnostics to provide 
supporting information that aids in decisions.  (Section 2.3) 

 
Recommendations:  

● Support work to prepare AI results for the rigorous approval procedures needed for 
acceptance for clinical practice.  Create testing and validation approaches for AI 
algorithms to evaluate performance of the algorithms under conditions that differ 
from the training set. (Section 2.3) 

 
2. Confluence of AI and Smart Devices for Monitoring Health and Disease 
 

Findings:  
● Revolutionary changes in health and health care are already beginning in the use of 

smart devices to monitor individual health. Many of these developments are taking 
place outside of traditional diagnostic and clinical settings.  (Section 3.1) 

● In the future, AI and smart devices will become increasingly interdependent, 
including in health-related fields. On one hand, AI will be used to power many 
health-related mobile monitoring devices and apps. On the other hand, mobile devices 
will create massive datasets that, in theory, could open new possibilities in the 
development of AI-based health and health care tools.  (Section 3.1) 

 
Recommendations:  

● Support the development of AI applications that can enhance the performance of new 
mobile monitoring devices and apps.  (Section 3.1) 

● Develop data infrastructure to capture and integrate data generated from smart 
devices to support AI applications.  (Section 3.1) 

● Require that development include approaches to insure privacy and transparency of 
data use.  (Section 3.1) 

● Track developments in foreign health care systems, looking for useful technologies 
and also technology failures. (Section 3.1) 
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3. Create Comprehensive Training Databases of Health Data for AI Tool Development 
 

Findings:  
● The availability of and access to high quality data are critical in the development and 

ultimate implementation of AI applications in health care. (Section 4) 
○ AI algorithms based on high quality training sets have already demonstrated 

performance for medical image analysis at the level of the medical capability 
that is captured in their training data. (Section 2.1) 

○ AI algorithms cannot be expected to perform at a higher level than their 
training data, but should deliver the same standard of performance 
consistently for data within the training space. (Section 2.1) 

● Laudable goals for AI tools include accelerating the discovery of novel disease 
correlations and helping match people to the best treatments based on their specific 
health, life-experiences, and genetic profile.  Definition and integration of the data 
sets required to develop such AI tools is a major challenge.  (Section 4) 

● Extreme care is needed in using electronic health records (EHRs) as training sets for 
AI, where outputs may be useless or misleading if the training sets contain incorrect 
information or information with unexpected internal correlations.  (Section 6.1) 

● Techniques for learning from unlabeled data could be helpful in addressing the issues 
with using data from a diverse set of sources. (Section 4.2) 

 
Recommendations:  

● Support the development of and access to research databases of labeled and unlabeled 
health data for the development of AI applications in health. (Section 4)  

● Support investigations into how to incentivize the sharing of health data, and new 
paradigms for data ownership. (Section 4) 

● Support the assessment of AI algorithms trained with data labeled at levels that 
significantly exceed standard assessment, for instance the use of outputs from the 
next stage of diagnostics (e.g., use of biopsy results to label dermatological images).    
(Section 2.1) 

● Support research to characterize the tradeoffs between data quality, information 
content (complexity and diversity) and sample size, with the goal of enabling 
quantitative prediction of the quantity and quality of data needed to support a given 
AI application.  (Section 4) 

● Identify and develop strategies to fill important data gaps for health. (Section 4) 
● Develop automated curation approaches for broadly based data collections to format 

them for AI tools, e.g., as with well labeled imagery. (Section 4.2) 
 
4. Fill in Critical Missing Data Gaps 
 

 Findings:  
● AI application development requires training data, and will perform poorly when 

significant data streams are absent. While DNA is the blueprint for life, health 
outcomes are highly affected by environmental exposures and social behaviors. There 
is an imbalance in the effort to capture the diverse data needed for application of AI 
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techniques to precision medicine, with information on environmental toxicology and 
exposure particularly suffering: (Section 5.2.2)   

○ Techniques exist to capture individual environmental exposures, e.g., blood 
toxin screening, diet questionnaires.  

○ Techniques exist for environmental pathogen sensing.  
○ Technologies exist that can capture environmental exposures geographically 

and create environment tracking systems. 
 
Recommendations:  

● Support ambitious and creative collection of environmental exposure data: (Section 
5.2.2) 

○ Build toxin screening (e.g., dioxin, lead) into routine blood panels, and 
questions about diet and environmental toxins into health questionnaires. 

○ Start urban sensing and tracking programs that align with the geographic areas 
for the All of Us Research Program and similar projects in the future. 

○ Support the development of wearable devices for the sensing of environmental 
toxins. 

○ Support the development of broad-based pathogen sensing for rural and urban 
environments. 

○ Develop protocols and IT capabilities to collect and integrate the diverse data.  
 
5. Embrace the Crowdsourcing Movement to Support AI development and Data Generation 
 

Finding: AI competitions have already demonstrated their value in 1) encouraging the 
creation of large corpuses of data for broad use, and 2) demonstrating the capabilities of AI 
in health, when provided data that are curated into a well labeled (namely high information 
content) format.  (Section 4.12) 
 
Recommendations:  

● Support competitions created to advance our understanding of the nature of health 
and health care data. (Section 4.12) 

● Share data in public forums to engage scientists in finding new discoveries that will 
benefit health. (Section 4.12) 

 
6. Understand the Limitations of AI Methods in Health and Health care Applications 
 

Findings: 
● There is potential for the proliferation of misinformation that could cause harm or 

impede the adoption of AI applications for health. Websites, Apps, and companies 
have already emerged that appear questionable based on information available.  
(Section 3.2) 

● Methods to insure transparency in disclosure of large scale computational models and 
methods in the context of scholarly reproducibility are just beginning to be developed 
in the scientific community.  (Section 6.2) 

 
Recommendations:  
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● Support the development of critical safeguards that are essential to enable the 
adoption of AI for public health, community health, and health care delivery: 

○ Encourage development and adoption of transparent processes and policies to 
ensure reproducibility for large scale computational models.  (Section 6.2) 

○ To guard against the proliferation of misinformation in this emerging field, 
support the engagement of learned bodies to encourage and endorse best 
practices for deployment of AI applications in health.  (Sections 3.2 and 6.2) 
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1 INTRODUCTION 
 
Artificial Intelligence (AI), where computers perform tasks that are usually assumed to require 
human intelligence, is currently being discussed in nearly every domain of science and 
engineering. Major scientific competitions like ImageNet Large Scale Visual Recognition 
Challenges [1] are providing evidence that computers can achieve human-like competence in 
image recognition. AI has also enabled significant progress in speech recognition and natural 
language processing [2]. All of these advances open questions about how such capabilities can 
support, or even enhance, human decision making in health and health care. Two recent high-
profile research papers have demonstrated that AI can perform clinical diagnostics on medical 
images at levels equal to experienced clinicians, at least in very specific examples [3,4].  
 
The promise of AI is tightly coupled to the availability of relevant data [5]. In the health 
domains, there is an abundance of data [6]. However, the quality of, and accessibility to, these 
resources remain a significant challenge in the United States. On one hand, health data has 
privacy issues associated with it, making the collection and sharing of health data particularly 
cumbersome compared to other types of data. In addition, health data are quite expensive to 
collect, for instance in the case of longitudinal studies and clinical trials, so it tends to be tightly 
guarded once it is collected. Further, the lack of interoperability of electronic health record 
systems impedes even the simplest of computational methods [7] and the inability to capture 
relevant social and environmental information in existing systems leaves a key set of variables 
out of data streams for individual health [8].  
 
At the same time, there is wide private-sector interest in AI in health data collection and 
applications as illustrated from the numerous startups related to AI in health and health care (a 
partial list as of 2016 is captured in Figure 1) [9].  Most (75) of the 106 listed startups are 
headquartered in the US. There are startups in 15 different countries, with the UK and Israel 
having the largest number of startups outside the US.  The two most popular topics, medical 
imaging & diagnostics and patient data & risk analytics, are a strong focus in this report.  
However, another key focus of this report, the importance of environmental factors, is less 
apparent in the startup activity shown.   
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Figure 1:  AI in Health Care Startups. From CB Insights (2016) [9]. 

1.1 Why Now?  
AI has been around for decades and its promise to revolutionize our lives has been frequently 
raised, with many of the promises remaining unfulfilled. Fueled by the growth of capabilities in 
computational hardware and associated algorithm development, as well as some degree of hype, 
AI research programs have ebbed and flowed. The JASON 2017 report [10] gives this history 
and also comments on the current AI revolution stating: 
 

 “Starting around 2010, the field of AI has been jolted by the broad and unforeseen 
successes of a specific, decades-old technology: multi-layer neural networks (NNs). This 
phase-change reenergizing of a particular area of AI is the result of two evolutionary 
developments that together crossed a qualitative threshold: (i) fast hardware Graphics 
Processor Units (GPUs) allowing the training of much larger—and especially deeper (i.e., 
more layers)—networks, and (ii) large labeled data sets (images, web queries, social 
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networks, etc.) that could be used as training testbeds. This combination has given rise to 
the “data-driven paradigm” of Deep Learning (DL) on deep neural networks (DNNs), 
especially with an architecture termed Convolutional Neural Networks (CNNs).”  

 
Is the current era just another hype cycle [11]?  Or are things different this time that would make 
people receptive to embracing the promise of AI applications in health and health care?  AI is 
largely exciting to computational sciences researchers throughout academia and industry. 
Perhaps previously the revolutionary advances in AI had no obvious way to touch the lives of 
individuals. The opportunities from health, including health care delivery, for AI may today be 
enhanced by current societal factors that make the fate of AI hype different this time. Currently, 
there is great frustration in the cost and quality of care delivered by the US health care system 

[12]. To some degree, this has fundamentally eroded patient confidence, opening people’s minds 
to new paradigms, tools, services. Dovetailing with this, there is an explosion in new personal 
health monitoring technology through smart device platforms [13,14] and internet-based  
interactions [15]. This seemingly perfect storm leads to an overarching observation, which 
defines the environment in which AI applications are now being developed: 
 
Overarching Observation: Unlike previous eras of excitement over AI, the potential of AI 
applications in health and health care may make this era different because the confluence of the 
following three forces has primed our society to embrace new health centric approaches that may 
be enabled by advances in AI: 1) frustration with the legacy medical system, 2) ubiquity of 
networked smart devices in our society, 3) acclimation to convenience and at-home services like 
those provided through Amazon and others. 
  
1.2 JASON Study Charge and Process 
 
The U.S. Department of Health and Human Services (HHS), through the Office of the National 
Coordinator for Health IT (ONC) and the Agency for Healthcare Research and Quality (AHRQ), 
and with support from the Robert Wood Johnson Foundation requested this JASON study. ONC, 
reporting directly to the Secretary of HHS, was established by executive order in 2004 and 
established in statute in 2009 by the Health Information Technology for Economic and Clinical 
Health Act as the principal federal entity responsible for the coordination and implementation of 
nationwide efforts for the electronic exchange of health information. AHRQ, an agency within 
HHS, develops the knowledge, tools, and data needed to improve the quality and safety of the 
health care system and help Americans, health care professionals, and policymakers make 
informed health decisions. 
 
HHS asked JASON to assess the full impact that AI can have on health and health care in the 
context of how AI could shape the future of public health, community health, and health care 
delivery from a personal level to a system level. Understanding these AI opportunities and 
considerations can better prepare and inform AI development, policy making, and promote the 
general welfare of health care consumers and the public.  
 
JASON was introduced to the topic through briefings by various experts, listed in Table 1. 
Materials recommended by these individuals, together with a wide range of other publically 
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available materials, were reviewed and discussed by JASON. Most briefers attended the full set 
of presentations and participated in the accompanying discussions.   

Specific mathematical details surrounding current AI applications, including deep learning and 
convolutional neural networks, will not be discussed here. The reader is referred to JASON  
2017 [10] for an excellent exposition of these models and architectures. 

Table 1: Briefers 
Name Affiliation 
Abdul Hamid Halabi NVIDIA 
Kimberly Powell NVIDIA 
Andy Beam Harvard 
Zak Kohane Harvard 
Ziad Obermeyer Harvard 
Eileen Koski IBM Research 
Georgia Tourassi Oak Ridge National Labs 
John Wilbanks Sage Bionetworks 
Kevin Chaney HHS 
Teresa Zayas Cabán HHS 
Lynda Chin University of Texas 
Mark DePristo Google 
Jonathon Shlens Google 
Paul Silvey MITRE 
Russ Altman Stanford 

Focus of the Study.  

JASON was asked to consider how AI will shape the future of public health, community health, 
and health care delivery. We focused on technical capabilities, limitations, and applications that 
can be realized within the next ten years, in the context of the questions developed with the 
sponsors (see Appendix).   

The organization of this report is as follows. Section 2 focuses on health care and health care 
delivery. Section 3 reviews the rapid development of smart devices and associated mobile 
applications in health, and Section 4 argues for the need for good data to drive AI application 
development generally, and health applications specifically. Section 5 covers issues around 
large-scale health data collection and missing data streams. Section 6 discusses what is needed 
for successful adoption of AI in health. The report concludes with a summary of the findings and 
recommendations in Section 7 and an epilogue in Section 8. 



 

11 

 

 
2 AI IN HEALTH DIAGNOSTICS: OPPORTUNITIES AND 

ISSUES FOR CLINICAL PRACTICE 
 

There have been significant demonstrations of the potential utility of Artificial Intelligence 
approaches based on Deep Learning [10] for use in medical diagnostics [16].  While continuing 
basic research on these methods is likely to lead to further advances, we recommend parallel, 
focused work on creating rigorous testing and validation approaches for the clinical use of AI 
algorithms.  This is needed to identify and ameliorate any problems in implementation [17,18], 
as soon as possible, in order to develop confidence within the medical community and to provide 
feedback to the basic research community on areas where continued development is most 
needed. 
   
We point out a key issue of balance in expectations, which is that AI algorithms, including Deep 
Learning, should not be expected to perform at higher levels than the training sets.  However, 
where good training sets represent the highest levels of medical expertise, applications of Deep 
Learning algorithms in clinical settings provide the potential of consistently delivering high 
quality results.  Thus, one aspirational goal for such applications should be to make high quality 
health care services available to all.   
 
2.1 Advances in AI Applications for Medical Imaging 
 
In the following sections, we review examples in which applications of Deep Learning have been 
demonstrated, with attention to quantitative understanding of characteristics of the data sets, the 
problem definition, and the nature of the comparison standard used for labeling the sets.   The 
two examples described are based on medical imaging, specifically diabetic retinopathy and 
dermatology.  
  
2.1.1 Detection of diabetic retinopathy in retinal fundus images 
 
Many diseases of the eye can be diagnosed through non-invasive imaging of the retina through 
the pupil [19].  Early screening for diabetic retinopathy is important as early treatment can 
prevent vision loss and blindness in the rapidly growing population of patients with diabetes.  
Such screening also provides the opportunity to identify other eye diseases, as well as providing 
indicators of cardiovascular disease. 
 
The increasing need for such screening, and the demands for expert analysis that it creates, 
motivates the goal of low cost, quantitative retinal image analysis.  Routine imaging for 
screening uses the specially designed optics of a ‘fundus camera,’ with several images taken at 
different orientations (fields, see Figure 2) [20] and can be accomplished with (mydriatic) or 
without (non-mydriatic) dilation of the pupil.  Assessment of the image requires skilled readers, 
and may be performed by remote specialists.  With the advent of digital photography, digital 
recording of retinal images can be carried out routinely through Picture Archiving and 
Communication Systems (PACS).   
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Figure 2:  Standard image formats for diabetic retinopathy (right eye). Source: taken from 
EYEPACS LLC 2017. 

 
 
As a point of reference, the standards for screening [21] for diabetic retinopathy in the UK 
require at least 80% sensitivity and 95% specificity to determine referral for further evaluation.  
Screening using fundus photography, followed by manual image analysis, yields sensitivity and 
specificity rates cited as 96%/89% when two fields (angles of view) are included, and 92%/97% 
for three fields.  (For a single field, cited rates are 78%/86%).  
 
Recently a transformational advance in automated retinal image analysis, using Deep Learning 
algorithms, has been demonstrated [22].  The algorithm was trained against a data set of over 
100,000 images [23], which were recorded with one field (macula-centered).  Each image in the 
training set was evaluated by 3-7 ophthalmologists, thus allowing training with significantly 
reduced image analysis variability.  The results from tests on two validation sets, also involving 
only one image per eye (fovea centered), are striking.  Selecting for high specificity (low false 
negatives), yielded sensitivities/specificities of 90.3%/98.1% and 87.0%/98.5%).  Selecting for 
high sensitivity yielded values of 97.5%/93.4% and 96.1%/93.9%).   These results compare 
favorably with manual assessments even where those are based on images from multiple fields as 
noted above.  They also are a significant advance over previous automated assessments, which 
consistently suffered from significantly lower sensitivities [24]. 
 
The Deep Learning algorithm shows great promise to provide increased quality of outcomes with 
increased accessibility.  Continued work to establish its use as an approved clinical protocol (see 
Section 2.3), will be needed.  Once validated, its use can be envisioned in a wide range of 
scenarios, including decision support in existing practice, rapid and reduced cost analysis in 
place of manual assessment, or enabling diagnostics in non-traditional settings able to reach 
underserved populations.  Greatly expanded accessibility is likely to be aided by deployment of 
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low cost fundus cameras, which are under rapid development [25,26] and likely to be supported 
by apps as described in Section 3.  
    
2.1.2 Dermatological classification of skin cancer 
  
Skin cancer represents a challenging diagnostic problem because only a small fraction (3–5% of 
about ~1.5 million annual US skin cancer cases) are the most serious type, melanoma, which 
accounts for 75% of the skin cancer deaths.  Identifying melanomas early is a critical health 
issue, and because diagnosis can be performed on photographic images, there are already services 
that allow individuals to send their smart-phone photos in for analysis by a dermatologist [27]. 
However, the detection of melanomas in screening exams is limited – sensitivity 40.2% and 
specificity 86.1% for primary care physicians and 49.0%/ 97.6% for dermatologists [28]. 
  
A recent demonstration of automated skin cancer evaluation using a convolutional neural 
network (CNN) algorithm yielded striking results [29].  The authors drew on a training set of 
over 125,000 dermatologists labeled images, from 18 different online repositories.  Two 
thousand of the images were also labeled based on biopsies.  The algorithm was trained on all the 
dermatologist labeled images, using 757 disease classes and over 2000 diseases.  The top levels 
of the taxonomy are shown in Figure 3a.  In testing the algorithm, the algorithm performed 
similarly to dermatologists in classifying at the 1st level I (three categories; benign, malignant 
and non-neoplastic) with 72.1% accuracy vs. 66.0 and 65.56% for two dermatologists.  In 
classifying for the 2d level (9 disease classes), the respective accuracies were 55.4% for the 
algorithm versus 53.3 and 55.0% for the two dermatologists.  The performance levels of the 
algorithm are almost certainly limited by levels of sensitivity and accuracy for the labeling of 
images in the training sets. 
 
    
 

 
 
Figure 3:  a) (left panel) Illustration of the top levels of the tree-structured taxonomy.  The full 
set of 2032 diseases are leaf nodes and were used for the developing the algorithm.  b) (right 
panel) Classification results for a set of 130 images of melanocytic lesions, blue curve from the 
algorithm, red dots from individual dermatologists.  Images taken from Esteva et al. 2017 [30]. 
 

b 
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 A further classification test was performed drawing only on images that were biopsy-proven to 
be in a specific disease class.  The algorithm then was run to answer only the question of whether 
the lesion in the image was benign or malignant.  The results for analysis of 130 images of 
melanocytic lesions are shown in Figure 3b, compared with results from assessments by 22 
different dermatologists.  As with the broader classification tests, the algorithm performs 
similarly or slightly better than individual dermatologists.  The performance for both algorithm 
and dermatologists is much better for this specific task than for the classification, noted above, of 
images from a set representing all the different diseases.   
 
As with the retinopathy example, these results indicate that AI algorithms can perform at levels 
matching their training sets.  The poor level of results for the broad screening tests is consistent 
with the training set, which is based on dermatological characterization.  It would be of great 
interest to understand whether a training set based on a more accurate method of discrimination, 
for instance biopsies, would allow the algorithm to perform significantly better.  The much better 
results on the narrower classification task, for both the algorithm and the dermatologists, suggests 
that the clinical decisions that originally led to these cases being selected for biopsies may have 
removed many less-easily classified images.  Overall this is a very promising result, but as the 
authors note, more work is needed for it to deliver value in a broad clinical setting.   

2.1.3 Data issues 
Each of the examples above relied on access to large sets of medical images, some of which were 
available in professionally maintained archives.  In addition, however, each also required the 
development of a labeled training set.  In the retinopathy example these were obtained via labor-
intensive independent professional assessments of the images.  In the dermatology case, the 
training was also based on clinician assessments of the images.  It would be of significant 
interest to determine whether training against a more rigorous assessment, such as the outcome 
of a biopsy, improves the performance of the algorithm.  The data sets available in the 
dermatology example included too small a number of biopsy-proven images to serve as the sole 
training basis.  One question to consider is whether mixing images labeled based on a biopsy 
with those labeled by image reading would improve the performance of the algorithm.   
 
Access to high-quality labeled data is a significant barrier in the development and evaluation of 
AI algorithms for clinical decision making [30].  The process of developing training labels from 
existing records requires skilled labor review of patient charts to create meaningful labels. As a 
result of the time and cost involved many publically accessible labeled sample sets are too small 
for the best training and testing of AI algorithms.  Data sets that are labeled from clinical (as 
opposed to research-level sources) may be of variable quality that limits the training efficacy, as 
discussed in Section 6.1. 
 
Findings: 

● AI algorithms based on high quality training sets have demonstrated performance for 
medical image analysis at the levels of the medical capability that is captured in their 
training data.  

● AI algorithms cannot be expected to perform at a higher level than their training data, but 
should deliver the same standard of performance consistently for images within the 
training space. 
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Recommendation: 
● Support the assessment of AI algorithms using data labeled at levels that exceed standard 

assessments, for instance the use of outputs from a further stage of diagnostic testing 
(e.g., use of biopsy results to label dermatological images).  
  

2.2 Moving Computational Advances into Clinical Practice 
 
Computational methods are recognized as a special type of tool in medical practice and where 
they impact clinical practice, are subject to different forms of regulation.  AI-based tools 
represent a new set of opportunities, but lack the extensive basis of experience and validation 
that is needed for acceptance into formal medical practice.  In this section and Section 2.3, we 
address the question of how AI-based computational approaches could become sufficiently 
trusted to modify protocols for diagnosis and treatment, enabling improved outcomes at lowered 
costs.     
 
We use the example of a new computational tool that requires large scale computation, but is 
based on physical properties rather than a trained AI algorithm.  The example illustrates the 
rigorous process of review and development needed to validate new techniques for clinical 
practice.  It also illustrates how important the demonstration of the benefits of a new approach is 
to its eventual uptake as a clinical tool.   

2.2.1 Coronary artery disease – issues driving interest in improved methods  
A large number of patients experiencing chest pain undergo invasive testing only to reach a 
negative diagnosis.  The negative impacts on patient experience, access to expensive diagnostic 
facilities, and cost create a strong incentive to develop alternative approaches. 
 
The diagnosis of whether a patient has coronary artery disease (CAD), and will benefit from 
cardiac revascularization (bypass surgery or insertion of a stent) is based on two primary factors.  
The first is structural: the narrowing of the blood vessels (stenosis) around the heart.  The second 
is functional:  reduced flow of blood (ischemia) compared with the flow in a normal coronary 
artery. Direct measurement of stenosis can be accomplished with invasive coronary angiography, 
in which a cardiac catheter is inserted to deliver a contrast dye to the arteries supplying the heart 
followed by X-ray imaging.  Direct measurement of blood flow is accomplished by the invasive 
fluid flow reserve (FFR) technique, based on insertion of a pressure sensor through a cardiac 
catheter. 
  
Unfortunately, the use of invasive coronary angiography for patients with severe chest pain 
reveals a large fraction (60% for patients who do not have other significant indicators of CAD) 
who do not have significant arterial narrowing [31].  Furthermore, 50% or more of the cases with 
significant narrowing do not have significantly impaired blood flow (measured by FFR) and 
would not benefit from revascularization [32].  

2.2.2 Development of new approaches – non-invasive diagnostics  
Coronary computed tomographic angiography (CCTA) has been established as a non-invasive 
technique for screening [33]. However even at its best performance, CCTA-like invasive 
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coronary angiography (ICA) – has limited ability to discriminate which cases of stenosis are 
truly causing impaired blood flow.  Recently advances in computational fluid dynamics (CFD) 
and in physical understanding of arterial behavior have enabled computational determination of 
the fluid flow reserve computationally [34] using CCTA as the input for the structure.   An 
example of such a blood flow assessment is shown in Figure 4.  
 
  

 
 
Figure 4: Three-dimensional pressure and velocity fields at one point in the cardiac cycle using 
FFR- based on CTA imaging (FFRCT).  The computation is repeated throughout the cardiac 
cycle. Source: Images have been taken from Taylor et al 2013 [34]. 
 
 
The process of establishing this approach for clinical use included early assessments 
(ClinicalTrials.gov NCT01189331 and NCT01233518) that compared the performance of 
computational FFR (FFRCT) and CCTA alone for diagnosing significantly reduced blood flow.  
The results showed that FFRCT performed dramatically better on per-vessel assessments, and 
significantly better on per-patient assessments [35]. These positive results, with the potential for 
greatly reducing the number of invasive tests while maintaining quality in diagnosis, created 
significant interest in evaluating the technique for use in clinical care.  

2.2.3   Development and validation for clinical applications 
A private company, Heart Flow, Inc, [36] led development of the FFRCT technology for clinical 
use.   In 2014, the company received FDA approval to market the technology, based on its 
demonstration of substantial equivalence to predicate devices [37].  In parallel, additional studies 
were underway to establish whether FFRCT is a feasible alternative to invasive coronary 
angiography [38] and its potential use as a direct diagnostic for CAD-induced reduced blood 
flow requiring revascularization [39].  The test of diagnostic performance yielded the results 
shown in Table 2, showing favorable performance for FFRCT. 
  
  

http://clinicaltrials.gov/show/NCT01189331
http://clinicaltrials.gov/show/NCT01189331
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Table 2:  Per-patient (upper panel) and per-vessel (lower panel) diagnostic performance of 
CCTA, fractional flow reserve derived from standard acquired coronary computed tomography 
angiography datasets, and invasive coronary angiography.  Ranges represent a 95% confidence 
interval.  Threshold for stenosis was 50% or more reduction in vessel diameter and for FFR was 
a reduction to 0.8 or less. 

Source: Table extracted from Norgaard et. al. (2014) [41]. 

These (and other) study results enabled the critical step of evaluation for actual clinical use.   
Such assessment requires comparison with the established standards of care along with 
quantification of the impact for patient quality of life and economics [40, 41].  The results 
confirmed that using FFRCT can correctly predict patients who should not be referred for an ICA, 
greatly reducing the amount of invasive testing.  The reduction in invasive procedures and 
associated hospitalization and medications during a 90-day follow-up period improved patient 
quality of life metrics and reduced costs by approximately 30%.  

Being established as a standard of care is the final step of approval for new clinical practices.  
The UK National Institute for Health and Care Excellence (NICE) guidance for FFRCT, 
illustrates this process [42].  The company presented the case for the FFRCT technology to NICE.   
NICE carried out an independent literature review and an independent assessment of the cost 
reductions due to fewer inconclusive or inaccurate diagnostic tests and avoidance of unnecessary 
staff and procedure costs.  The resulting recommendation is that FFRCT should be considered as 
an option as part of the NICE pathway on chest pain, with a potential cost savings of over £200 
per patient.  Similar approval processes are required on a country-by-country basis. In the US, 
almost all health insurance payment and information systems require that a procedure have been 
awarded an American Medical Association Current Procedural Terminology Code [43].  

With approval in place, the challenge becomes the rate of uptake in practice.  HeartFlow is 
continuing with additional clinical trials to demonstrate additional benefits to the medical 
community.  Another pathway to uptake is relationships with equipment providers, which offers 
the potential for the new diagnostic technique to be marketed as part of an equipment line.  The 
potential to further improve the technology using AI has been recognized and is in development 
[44]. 

Per-Patient 

CoronaryCTA Stenosis> 50% p Value FFR:c1 < 0.80 p Value ICA St....is > 50% 

Accuracy 53 (47-57) < 0.001 8.1 (7 6-.86) 0 .09 77 (71-82} 

Sensitivity 94 (86-97) 0.058 86 (77-'92) < 0.001 64 (53-74} 

Specificity 34 (27-41) < 0.001 79 (72-84) 0.29 83 (77-88) 

PPV 40 (33-47) < 0.001 65 (56-74) 0 .34 63 (52- 73} 

NPY 92(83-97) 0.46 93 (87- 96) <0.001 83 (77-89} 

Per-Vessel

Coronary CTA Stenosis> 50% p Value FFR sub CT< or equal to 0.80p Value ICA Stenosis > 50% 

Accuracy 65 (61-69) <0.001 86 (83-89) 0.032 82 (79-86) 

Sensitivity 83 (74-89) 0.91 84 (75-89) <0.001 55 (45-65) 

Specificity 60 (56-65) < 0.001 86 (82-89) 0.16 90 (86-93) 

PPV 33 (27-39) < 0.001 6.1 (53-69) 0.18 58 (48-68) 

NPV 92 (88-95) 0.()68 95 (93-97) < 0.001 88 (85-92) 

Category 

Category 
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2.2.4   Summary points for developing clinical applications 
The FFRCT example illustrates key issues for a new computational technology to enter into 
practice: 
  

● The technology should address a significant, identified clinical need. 
● The technology must perform at least as well as the existing standard approach.    
● Substantial clinical testing is needed to verify the performance of the new technology 

under the wide range of clinical situations in which it may be used. 
● The new technology should provide improvements in patient outcomes, patient quality of 

life, practicality in use, and reduced medical system costs.   
  
Because the FFRCT technology is based on physical principles, rather than the less-understood 
correlations of AI, its review and acceptance process likely faced less skepticism than a new AI 
approach may encounter.  For the medical community to develop trust in AI-based tools, 
assessments at least as rigorous will be needed. 
    
2.3 Evolution of Standards for AI in Medical Applications 
 
In the US, adoption of AI applications for clinical practice will be regulated by a combination of 
Food and Drug Administration (FDA) regulations and clinical business models. For non-clinical 
personal smart device uses discussed in the following section, it will require public (user) 
confidence and may or may not require regulation. 
 
In the example above, the adoption of the FFRCT computational tool required clinical studies. 
This will also be necessary for AI outcomes to be accepted as definitive decision factors in 
standard of care.  Such decisions may need FDA regulations and the specifics of what those 
requirements might be are still evolving [45]. 
 
FDA has been paying close attention to the international development of both software in 
medical devices (SiMD) and software as a medical device (SaMD). AI applications can fall into 
both of these categories. FDA has been participating (actually chairing) an international 
regulators forum on SiMD and SaMD [46]. The goal of the forum is to develop frameworks, risk 
categorizations, vocabulary, considerations, and principles that could support regulation around  
software [47]. Their report on clinical evaluation [48] was put out in the US for public comment 
[49] by the FDA. FDA plans to use that input as the basis to guide their new development of 
regulation for SiMD and SaMD and to be responsive to new policies under the 21st Century 
Cures Act noting [50] 
 

 “... the Act revised FDA’s governing statute to, among other things, make clear that 
certain digital health technologies—such as clinical administrative support software and 
mobile apps that are intended only for maintaining or encouraging a healthy lifestyle—
generally fall outside the scope of FDA regulation. Such technologies tend to pose low 
risk to patients but can provide great value to the health care system.”  
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FDA’s new digital health unit will be using this input to formulate FDA’s role in regulation of 
digital health to include mobile health (mHealth), health information technology (IT), wearable 
devices, telehealth and telemedicine, and personalized medicine [51]. 

Clinical trials and regulation are only part of the story for adoption of AI applications. In 
addition clinicians or health professionals (e.g., physical training, doctor, or public health 
specialist) must be willing to incorporate these applications into their workflows. The FFRCT 
example of Section 2.2 and the AMA study [52] discussed in Chapter 3 point out that adoption 
will depend on how well the mHealth devices and applications fit within existing systems and 
practices. However, even to support the development of clinical trials and the assurance that the 
AI applications are legitimate, including for non-regulated applications, the technical soundness 
of the algorithms need to be confirmed.  This point is addressed in more depth in Section 6.   

Findings:   
● The process of developing a new technique as an established standard of care uses the

robust practice of peer-reviewed R&D, and can provide safeguards against the deceptive
or poorly-validated use of AI algorithms (see also Section 6).

● The use of AI diagnostics as replacements for established steps in medical standards of
care will require far more validation than the use of such diagnostics to provide
supporting information that aids in decisions.

Recommendation: 
Support work to prepare promising AI applications’ results for the rigorous approval 
procedures needed for acceptance for clinical practice.  Create testing and validation 
approaches for AI algorithms to evaluate performance of the algorithms under conditions 
that differ from the training set.  
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3 PROLIFERATION OF DEVICES AND APPS FOR DATA 
COLLECTION AND ANALYSIS  
 

Smartphones and other smart technologies are already a primary platform for the adoption of 
health and wellness through mHealth (mobile or digital health) apps and networked devices [53]. 
These apps and devices support the full spectrum from healthy to sick, e.g., from episodic fitbit 
users to diabetics who use glucose monitors. Questions arise regarding the use and usefulness of 
these devices by individuals and the willingness of the medical community to integrate mHealth 
into health care.  
 
There is active research on the design and testing of the usability of the apps and devices [54]. 
Additionally, many of the mHealth applications are being included in clinical trials. They are 
being used as a mechanism to collect information for the trial, to evaluate the specific device or 
app use, or to evaluate their usefulness in combination with other health behaviors. For example, 
in 2016 it was reported that Fitbit alone is being used in 21 clinical trials [55]. 
 
This growth in the development of more serious health devices that could be used to monitor and 
communicate health status to a professional has attracted the attention of the American Medical 
Association (AMA). AMA recently adopted a set of principles to promote safe, effective 
mHealth applications [56].  AMA is encouraging physicians and others to support and establish 
patient-physician relationships around the use of apps and associated devices, trackers, and 
sensors.  
 
An AMA survey released in 2016 reported that 31% of physicians see the potential for digital 
tools to improve patient care and about half are attracted to digital tools because they believe 
they will improve current practices with respect to efficiency, patient safety, improved diagnostic 
ability, and physician-patient relationships [57].  The study goes on to point out that adoption in 
practice will require these tools fit within existing systems and practices including coverage for 
liability, data privacy assurance, ability to link to electronic health records, and 
billing/reimbursements. These same points reflect issues for the adoption of AI applications 
discussed in Sections 2.2 and 2.3.  
 
These are all promising directions for the development and application of mHealth tools. The 
focus here is on the types of devices and apps that have the potential to benefit from AI 
applications either in their individual functions or when the data generated by the device can be 
integrated with other health information to support wellness versus sickness. 
 
3.1 Personal Networked Devices and Apps  
 
There are many impressive smartphone attachments and apps currently available for monitoring 
of personal health. These devices 1) empower individuals to monitor and understand their own 
health, 2) create large corpuses of data that can, in theory, be used for AI applications, and  
3) capture health data that can be shared with clinicians and researchers. AI algorithms drive the 
performance of many of these devices and, reciprocally, these devices are capturing data that 
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could be used to develop or improve AI algorithms.   Here we list some specific examples of 
modern health-monitoring tools available for use on mobile devices.  
 
● Personal EKG. Kardia Mobile [58] has produced an FDA-cleared personal EKG recording 

device. The platform uses a finger pad and a smartphone app to record an EKG over a 30 
second window. The device operates with no wires or gels. The platform claims to use AI-
enabled detection of atrial fibrillation. 

● Parkinson’s tremors. CloudUPDRS [59] is a smartphone app that can assess Parkinson’s 
disease symptoms. The app uses the gyroscope found in many mobile devices to analyze 
and quantify tremors, patterns in gait, and performance in a “finger tapping” test. An AI 
algorithm differentiates between actual tremors and “bad data,” such as a dropped phone or 
the wrong action in response to the app’s question. This tool enables Parkinson’s patients to 
perform in-home testing, providing valuable and quantitative feedback on how their 
personal lifestyle factors and medications may affect their symptoms. 

● Asthma tracking and control. AsthmaMD [60] offers a hand-held flow meter which 
gauges lung performance by assessing peak flow during exhalation. The flow meter pairs 
with an app that logs data for people with asthma and other respiratory diseases. Users can 
also record symptoms and medications. An interesting feature of this app is that users may 
opt-in to a program where their data are uploaded anonymously onto a Google database 
being assembled for research purposes. AsthmaMD states “anonymous, aggregate data will 
help correlate asthma with environmental factors, triggers and climate change.” 

 
These sorts of technologies can collect information of clear and vital importance to patients and 
use by clinicians, but we must again emphasize that each new data stream must be evaluated, 
collected and curated to formats consistent with clinical needs and AI applications. 
 
New devices are surely to come online and new ideas for these devices are being sponsored by 
government agencies. The National Institutes of Health has recently put out a request for 
proposals, called Mobile Monitoring of Cognitive Change (U2C) [61]: 
 

“This Funding Opportunity Announcement (FOA) invites applications to design and 
implement research infrastructure that will enable the monitoring of cognitive abilities 
and age, state, context, or health condition-related changes in cognitive abilities on 
mobile devices. This effort will include the development (or support for development) of 
apps on the Android and iOS platforms, the validation of tests and items to be used on the 
two leading smartphone platforms in age groups ranging from 20 to 85, and the norming 
of successfully validated measures to nationally representative U.S. population samples 
that will also receive gold standard measures, including the NIH Toolbox® for 
Assessment of Behavioral and Neurological Function. A goal of this project is to also 
support data collection efforts from participants enrolled in projects awarded through this 
FOA as well as other NIH-funded studies through FY2022, and enable the widespread 
sharing of both the collected data and the test instruments.” 

 
There are certain parts of the human body, however, that haven’t been successfully scrutinized 
by cell phone-based attachments. The bloodstream is one example. There are many things that 
would be desirable to measure in blood, both metrics of health (e.g., vitamins and minerals) and 
disease (e.g., viruses and cancer biomarkers). However, with the notable exception of glucose, 
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most things are at concentrations too low to be measured in a finger-prick volume of blood.  
Although not specific to the immediate report topic of AI applications in Health, the assessment 
of current and potential ultra-sensitive assays for chemicals and biomarkers in small blood 
samples should be evaluated. One can imagine a day where people could, for instance, 1) use 
their cell phone to check their own cancer or heart disease biomarker levels weekly to understand 
their own personal baseline and trends, or 2) ask a partner to take a cell-phone-based HIV test 
before a sexual encounter.  

3.1.1. Capturing mobile device information – utility and privacy 
Mobile devices and apps could provide a rich source of data to leverage broader AI applications. 
This is already happening as summarized above. But, more could be done to leverage the rapid 
development of mHealth apps, devices, and sensors. JASON 2014 [8] discussed the potential 
value in developing a data infrastructure that would ingest the wide range of data that is being 
generated around individual health, mobile technologies being one of them. Significant steps 
forward to create such an infrastructure have not been forthcoming, perhaps because the problem 
is simply too broad. One area of focus should be on data capture and infrastructure to support AI 
applications that enhance the performance and adoption of mHealth tools and thus give 
individuals more health autonomy. In addition, providing access to data captured by mHealth 
apps and devices could enhance the research community’s ability to build more insights into 
public health through AI. 
 
Such data sharing would require informed consent of the participants.  One promising example is 
the combination of a mobile electronic consent application with a mHealth app designed to 
collect data that will be helpful in managing an individual’s Parkinson disease [62].  The app was 
made available free in the US through the Apple App Store [63]. The app explained the study, 
who could participate, and gave options for sharing your data. The data sharing options included 
sharing your data with the specific research team that developed the app and were conducting the 
study or with a broader research community.  The study’s “mPower” app was downloaded by 
48k people of whom 25% were eligible and participated in the study (12.2k). Of those 
participants, 78% opted to have their data shared broadly. 
  
This is a nice example because it shows that people are willing to share data collected on their 
mobile devices for research purposes. In this example, the data being collected could also be a 
useful addition to an individual’s electronic health record. Finally, the implemented informed 
consent process both educated the individual on what they were consenting to regarding their 
data, as well as giving an option to consent electronically, thus allowing their data to 
immediately be captured. 

3.1.2 Online plus AI 
There is a proliferation of companies developing apps that offer online doctors’ appointments. In 
the U.S., this includes the new company PlushCare [64] but these services currently seem to be 
more prevalent in the U.K.  These apps allow nearly instantaneous access to a live doctor, over 
mobile devices, anytime of day, every day of the week.  One of them, Babylon, claims to use an 
AI algorithm, along with a series of questions about symptoms, to automatically triage patients 
[65]. Interestingly, the company is now expanding to Rwanda, where there is a serious shortage 
of doctors, yet a high penetration of smart phones. Online doctors’ appointments are likely to 
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appeal to many people who are already acclimated to the use of apps to fulfill personal needs 
(e.g., Amazon, Uber, etc.).  However, the potential dangers of sharing personal health 
information over such networked connections is a concern.  

3.1.3 Examples of privacy and transparency  
The rapid evolution and adoption of AI applications in remote access health care has a strong 
presence outside of the US. One such example is deep learning from the company DeepMind 
Technologies [66].  In 2016, DeepMind launched several initiatives in the health care arena 
under its DeepMind Health Division [67]. 
 
DeepMind is working with UK National Health System (NHS) Hospital Trust Foundation [68] to 
develop AI applications involving patient electronic health records from multiple London 
hospitals.  It is indicative of the fast moving pace of these AI in health care applications that the 
most informative information on the plans of DeepMind Health comes from investigative news 
articles written within the last few months of this study [69]. These have focused on issues of 
transparency, privacy, and health ethics issues relating to delivery of AI products in health care 
[70].  NHS patient data was provided without informed consent to Google to test an app 
designed to help monitor kidney disease. Some argue that this violated UK regulations that state 
“patient records without explicit consent can only be used for direct care delivery.”  However, 
this controversy has not slowed DeepMind’s continued and expanding partnership with  
NHS [71].  
           
From a US government perspective, the work of DeepMind Health using UK NHS data should 
be viewed as an early large scale “experiment” that will reveal many real-world issues that arise 
in the application of AI to health care. It should therefore be tracked closely. For example, the 
problem discussed above with data access transparency may have led DeepMind to an 
accelerated application of “blockchain-style” technology for securing and tracking data  
access [72].  Basically, blockchain methodologies use a distributed database consisting of 
continuously updated (augmented) “blocks” which contain a linked list of all previous 
transactions [73].  In the case of health care, this encompasses all previous records of access to 
an individual data record including information about how the data was used and any additions 
or changes to the data record [74,75]. 
      
A second technology application that has emerged from DeepMind Health has many blockchain-
like aspects [76,77].  Instead of blockchain, the DeepMind data audit system uses an approach 
based on Merkle Trees [78], a type of hash tree that allows secure verification of the contents of 
large data structures. DeepMind hopes to prototype the verifiable data audit system by the end of 
2017 for eventual use in its Royal Hospital health care software environment [79]. While the 
audit system will be prototyped within the confines of the NHS organizations, DeepMind sees 
the possibility that the audit system itself might become available to individuals in the public so 
that they can access and verify their actual electronic health records. 
      
Given the rapid growth of similar activities in other countries, the U.S. government should track 
developments in foreign health care systems, looking for useful technologies and also technology 
failures.    
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This leads us to the following findings and recommendations regarding the confluence of AI and 
personal networked devices and apps. 
 
Findings:  
 

● Revolutionary changes in health and health care are already beginning in the use of smart 
devices to monitor individual health. Many of these developments are taking place 
outside of traditional diagnostic and clinical settings.   

● In the future, AI and smart devices will become increasingly interdependent, including in 
health-related fields. On one hand, AI will be used to power many health-related mobile 
attachments and apps. On the other hand, mobile devices will create massive datasets that 
may open new possibilities in the development of AI-based health and health care tools. 

 
Recommendations:  

● Support the development of AI applications that can enhance the performance of new 
mobile monitoring devices and apps. 

● Develop data infrastructure to capture and integrate data generated from smart devices to 
support AI applications. 

● Require that development include approaches to insure privacy and transparency of data 
use. 

● Track developments in foreign health care systems, looking for useful technologies and 
also technology failures. 
    

3.2 Concerns about “Snake Oil” 
 
There is enormous money to be made in the inevitable onset of internet-delivered diagnostics and 
care. This will promote the entry of all sorts of companies into this space, both meritorious and 
not. For instance, there are already many paid online services available that will help people 
interpret their Ancestry.com genome data or offer weekly health reports based on 23andMe [80].  
How are Americans to know which of these they can trust?  
 
To illustrate the problem, consider the gene for Methylenetetrahydrofolate reductase (MTHFR).  
MTHFR plays a role in the folate cycle in humans, which is a key step in producing purines, 
building blocks of DNA.  This well studied gene has also been associated with numerous ills 
including contributing to plaque formation by damaging arterial walls and increasing the risks of 
clot formation.    
 
This sets up a precarious situation.  Here is a genetic variant that millions have been tested for 
(often inadvertently, via ancestry genetic testing) that sounds pretty scary. Through simple 
Google search you can find sites that present accessible information about the MTHFR gene and 
its effects.  However, the purpose of some of these websites is to guide visitors to expensive 
consultations purported to help them determine the best course of treatment for their MTHFR 
genotype.  According to an exposé, [81] in one case the consultation costs $3000, and generally 
results in a prescription of exotic vitamin combinations only available through the site.  If these 
pills contain B12 and folates, they might be an effective (but unreasonably expensive) remedy 
for the widespread MTHFR malady. With approximately 10-20% of the population having the 
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MTHFR mutation, there is a large pool of individuals who could be victimized by such 
‘services’.  
 
We easily imagine similar situations emerging with AI applications. Consider an example for 
skin cancer detection. Computer-aided automated skin cancer detection was demonstrated on 
biopsy-proven clinical images and tested against 21 dermatologists [82].  In parallel, online 
services already exist for remote dermatologist diagnosis of online-submitted images of skin 
moles [83].  We could imagine a scam service asking patients to submit self-taken skin mole 
images along with payment for an automated “quack” diagnosis in return, one that did not 
actually use any validated classification scheme. More likely, the methods used by any one 
company may be hidden or obscure, meaning the user has no way to judge the soundness of the 
company. Skinvision [83] is a new company based in the Netherlands for “skin cancer melanoma 
detection” where users download an app, take a picture for the app, and receive analysis, 
diagnosis, and tracking by the app. Very little information is provided about the methods used, 
other than Skinvision uses the “mathematical theory of ‘fractal geometry’ for medical imaging to 
diagnose suspected melanoma” and that “the algorithm has been developed and tested in 
cooperation with dermatologists and checks for irregularities in color, texture, and shape of the 
lesion”, although elsewhere in fine print the website acknowledges that “our solution is not a 
diagnostic device”. 
 
The threat of bogus web sites is diminished in the presence of trusted, credible resources. For 
example, information about cancer symptoms, diagnosis, and treatment options are provided by 
the American Cancer Society [84] and the Mayo Clinic [85].  WebMD was founded in 1996 to 
be such a resource.  It has been tremendously successful as a provider of news and information 
related to human health and well-being. WebMD has more monthly unique visitors than any 
other private or government health care website, making it the leading health publisher in the 
United States.  In the fourth quarter of 2016, WebMD recorded an average of 179.5 million 
unique users per month, and 3.63 billion page views per quarter [86]. 
 
Similar trusted web sites, developed and supported by competent experts, will be needed to help 
consumers navigate the proliferation of AI applications in health at both the individual and 
public health levels. Addressing this inevitable train wreck before it happens leads us to the 
following finding and recommendation. 
 
Finding: There is potential for the proliferation of misinformation that could cause harm or 
impede the adoption of AI applications for health. Websites, apps, and companies have already 
emerged that appear questionable based on information available. 
 
Recommendation: To guard against the proliferation of misinformation in this emerging field, 
support the engagement of learned bodies to encourage and endorse best practices and 
deployment of AI applications in health. 
  
3.3 Concerns about Inequity 
 
One issue with focusing on smart devices as the future gateway to health information, 
monitoring individual health, and remote health care is equity access to the information and 
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services. There are two parts to this equity issue. First is access to a smart platform such as a 
smartphone, and the second is access to the useful apps and devices. 
 
Recent data (2016) from Pew Research Center indicate 95% of Americans own a cellphone of 
some kind and 77% actually own a smartphone [87]. This is a sharp charge from 2011 where 
83% of Americans owned a cellphone of some kind and only 35% owned a smartphone [88].  
 
The distributions of cellphone and smartphone ownership for 2016 are given in Table 3. 
Ownership rates among men and women and different racial groups are quite similar. There are 
some differences across income and education levels, but overall rates are higher for every group 
than in 2011. Of particular note is the variation among age groups. There are differences in age 
groups with 100% of 18–29 year olds owning some sort of a cell phone and 92% owning a 
smartphone, compared to 95% and 49% in 2011. The elderly have lower adoption with only 80% 
of the 65+ age group owning a cellphone and only 42% owning a smartphone in 2016.  
Nonetheless, adoption is growing for the elderly as only 46% owned any sort of cellphone in 
2011 and only 11% owned a smartphone. 
 
A Pew report from 2015 [89] pointed out that a growing number of Americans are using their 
smartphone as their primary broadband access device, with the largest groups with the behavior 
being non-white with lower education and income levels. It was also noted that more than half of 
all smartphone owners used their devices to access health information and do on-line banking. 
These statistics imply that smartphone adoption could soon be ubiquitous making it a platform of 
interest for the widespread access to health apps, many of which will be AI enabled. 
 
However, there may be inequitable differences among these demographic groups in the means, 
education levels, or physical capabilities needed to purchase, understand or use the tools. This 
may be a role for public health and other government subsidy programs. As various AI 
applications become useful and also demonstrate a cost savings in the management of health and 
health care, these products could be provided to qualifying individuals through programs similar 
to Supplemental Nutrition Assistance (SNAP) [90], Temporary Assistance for Needy Families 
(TANF) cash assistance [91], and other medical assistance programs.  
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Table 3: PEW Research on Cellphone and Smartphone Usage 2016.
http://www.pewinternet.org/2011/07/11/smartphone-adoption-and-usage/ 

Source: Reproduced from Pew Research Institute “Mobile Fact Sheet,” January 12, 2017 [89]. 

96 of U.S. adults who own the following devices 

Any cellphone Smartphone Cellphone, but not smartphone 

Tota l 95% 77% 18%

M e n 96% 78% 18% 

Women 94% 75% 19% 

W hit e 94% 77% 17% 

Black 94% 72% 23% 

Hispanicic 98% 75% 23% 

Ages 18-29 100% 92% 8%

11% 99% 88% 11% 

50-64 97% 7 4 % 23% 

65+ 80% 4 2 % 38% 

Less t ha n h high school graduat e 92% 5 4 % 39% 

High school graduate 92% 69% 23% 

Som e college 96% 80% 16% 

Co llege g rad ate 97% 89% 8 % 

Less tha n $30 ,000 92% 64% 29% 

$30,000 -$ 4 9 ,999 95% 7 4 % 21% 

$50,0 00-$ 7 4 ,999 96% 83% 1 3 % 

$75,000+ 99% 93% 6 % 

Urba n 95% 77% 17% 

S b rba n 96% 79% 16% 

Rura l 94% 67% 27% 

Source: Survey conducted SepL 29-Nov. 6, 2016. 

PEW RESEARCH CE ER 

Category

http://www.pewinternet.org/2011/07/11/smartphone-adoption-and-usage/
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4 ADVANCING AI ALGORITHM DEVELOPMENT 
 
The examples given earlier in this report demonstrate the value in high quality training data for 
the development of AI applications. This point needs to be significantly underscored if the 
potential of AI for health is to be realized. There are many issues of being able to develop and 
share datasets based on health and health care data. First of all is the cost of creating labeled data 
of high quality – this may require hiring expert image analysts, or providing additional testing 
(such as biopsies) to create labels.  In the large quantities needed for AI data sets, this can be 
expensive. Other issues include the fact that the data may contain sensitive information about 
real people. Additionally, the culture in biology and life sciences, to include health care, is to 
closely protect one’s data that has typically been expensive and time intensive to collect. Few 
incentives exist to share this data until the primary researchers have squeezed all the results they 
can from their data. From an industry perspective, protecting intellectual property around AI 
applications currently does not lend itself to sharing data. These issues will be discussed 
throughout the remainder of this report. But first, there are overarching findings and 
recommendations associated with expanding the availability and access to comprehensive 
databases of health data. 
 
Findings:  

● The availability of and access to high quality data is critical in the development and 
ultimate implementation of AI applications. The existence of some such data has already 
proven its value in providing opportunities for the development of AI applications in 
medical imaging.   

● Laudable goals for AI tools include accelerating the discovery of novel disease 
correlations and helping match people to the best treatments based on their specific 
health, life-experiences, and genetic profile.  Definition and integration of the data sets 
required to develop such AI tools is a major challenge.   

 
Recommendations:  

● Support the development of and access to research databases of labeled and unlabeled 
health data for the development of AI applications in health.  

● Support investigations into how to incentivize the sharing of health data, and new 
paradigms for data ownership. 

● Support the assessment of AI algorithms using data labeled at levels that exceed standard 
assessment, for instance the use of outputs from the next stage of diagnostics (e.g., use of 
biopsy results to label dermatological images).    

● Support research to characterize the tradeoffs between data quality, information content 
(complexity and diversity) and sample size, with the goal of enabling quantitative 
prediction of the quantity and quality of data needed to support a given AI application.  

● Identify and develop strategies to fill important data gaps for health. 
 
 

4.1 Crowdsourcing 
  
The examples in the sections above demonstrate the value of large corpuses of labeled data in 
developing AI applications for health. Several of the examples made use of the highly successful 
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ImageNet competition [92] results to initiate their deep learning algorithms. These types of 
successes can be replicated if the broader research community, and the public, becomes more 
readily engaged in 1) the curation, analysis, and understanding of health and health care data as a 
novel and important new player in the “Big Data” field, 2) the development of improved and 
health care-tailored AI algorithms.  
 
The two specific vehicles for this are crowdsourcing via online technical competitions and 
citizen science via online public engagement activities. The competitions force the creation of 
good data by the host and bring in people to develop new AI applications. The citizen science 
approach is a promising path to creating the (labeled) data. 

4.1.1 Crowdsourcing competitions 
Crowdsourcing is becoming a growing success for AI in Health algorithm development via 
online competitions. The crowdsourcing competitions are able to engage top data scientists and 
programmers who are not health care domain experts. Some competitions have seen thousands of 
participants while others are purposefully limited to a select group of dozens of invited 
participants chosen from a pool of prior successful competitors. The competition duration can be 
from a few days up to months. Monetary prizes are often given out to the top winners, and from 
typical totals as small as $10K through $100K even up to $1M. Leaderboards serve to motivate 
the competitors and discussion boards promote sharing of information sometimes leading up to 
collaborations in the competitions themselves. Contributed code is usually made public and 
serves both as a benchmark and to move the field forward. Crowdsourcing is motivated by the 
fact that while there are numerous and varied strategies that can be applied to any predictive 
modeling task, it is impossible to know at the outset which technique will be most effective. 
  
Kaggle [93] is a popular, successful, and leading online data science competition host with over 
760,000 members around the world and hundreds of completed competitions in a variety of 
fields. One of the most successful health competitions to date was held in 2016-2017, run by 
Kaggle and Data Science Bowl [94] with support from over two dozen organizations. 
Competitors used anonymized, high-resolution lung scans from hundreds of patients provided by 
the National Cancer Institute. Competitors applied deep learning AI methods to find solutions 
that can improve lung cancer screening technology. The participants created algorithms that can 
accurately determine when lesions in the lungs are cancerous with the motivation to dramatically 
decrease the false positive rate of current low-dose CT technology. 
 
A competition example which highlights the curated data, is a recent Kaggle competition posted 
by the Memorial Sloan Kettering Cancer Center (MSKCC) [95]:  
   

For this contest “we need your help to take personalized medicine to its full 
potential.  Once sequenced, a cancer tumor can have thousands of genetic 
mutations. But the challenge is distinguishing the mutations that contribute to 
tumor growth (drivers) from the neutral mutations (passengers). Currently this 
interpretation of genetic mutations is being done manually. This is a very time-
consuming task where a clinical pathologist has to manually review and classify 
every single genetic mutation based on evidence from text-based clinical 
literature. For this competition MSKCC is making available an expert-annotated 
knowledge base where world-class researchers and oncologists have manually 
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annotated thousands of mutations. We need your help to develop a Machine 
Learning algorithm that, using this knowledge base as a baseline, automatically 
classifies genetic variations.”   

  
Crowdsourcing competitions for health are actually quite broad in topic and type of data source, 
even though medical imaging competitions have received the most attention. The competitions 
have included: assessing cardiac function as a key indicator of heart disease using MRIs [96]; 
seizure prediction based on intracranial EEG recordings [97]; and predicting actual activity from 
sensor data fusion for monitoring the elderly [98].   
 
The main challenge for crowdsourcing efforts is the required large, well-labeled public or semi-
public datasets in order to get the proper community involvement. Nobody could have predicted 
the benefits that derived from the careful creation of the ImageNet database [99], and we 
conjecture that the expanded creation of similar high-quality databases for health data could also 
lead to unforeseen advances. Additionally, the competitions could help accelerate new AI 
algorithm development, and an understanding of the biases and errors implicit to health data. 
There are already websites that are perfectly positioned to host such competitions, such as 
Kaggle [94]. 
 
A second major challenge to online competitions is in how to move competition-resulting 
software to clinical tools. At least one competition is already addressing this [100]. The Booz 
Allen Hamilton Data Science Bowl challenges participants to develop clinic-ready software, 
based on AI models, that can be used to detect early stages of lung cancer. One unique feature of 
this competition over some of the data-analysis-only competitions is that it will require creating 
teams of data scientists, software engineers, designers, and clinicians working together. 
 
A third major challenge is that competitions, thus far, are mostly limited to image 
recognition/computer vision. Complex and heterogeneous datasets, noisy medical datasets are 
not yet addressed (see Section 6.1). Yet, in contrast, large data-gathering projects (like the All of 
Us Research Program, see Section 5.1) will be gathering large amounts of data of unknown and 
varying quality. Data fusion, the integration of multiple heterogeneous data sources, is an 
example suggestion for a new type of contest. Health data has features that make it unique from 
all other types of data, and contests could be designed to facilitate an understanding of what 
those features are, and how to correct for them. One example could be giving participants access 
to both electronic health records and billing data for a collection of patients that would require 
creative data linkage strategies to develop matched data and corresponding analyses. 

4.1.2 Citizen science 
In cases where datasets are noisy, limited in number or scope, or otherwise not yet amenable to 
robust and autonomous computational processing, citizen science may be an approach to develop 
data sources. Citizen Science is a form of collaboration where members of the public participate 
in scientific research, a paradigm where the activities of an engaged public are intertwined with 
professional scientific research. Zooinverse [101] hosts a vast array of citizen science projects. 
  
One recent medical-related citizen science example is on bacterial resistance to antibiotics [102]. 
The researchers aim is to use a genetics-based approach to improve the treatment of  tuberculosis 
(TB) and reduce the spread of bacterial resistance to antibiotics. Understanding which changes in 
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the bacterial genome (mutations) lead to antibiotic resistance enables the identification of which 
antibiotics can be used to treat a particular patient, in a week rather than current practice of a 
month. The researchers are collecting over 100,000 TB infection samples from around the world. 
Each sample will have its genome sequenced and for each sample the volunteers will help 
determine the sample’s sensitivity to a range of antibiotics based on images of plates with 
different antibiotic doses where bacteria have been allowed to grow. Volunteers are simply asked 
to view images of plates and identify whether or not bacteria are growing. Here the hosts aim to 
compare and combine inputs by the volunteers, expert opinion, and computer processing of 
images to get an accurate assessment of each plate.  
 
Public forums are needed to engage citizen scientists in helping find new discoveries that will 
benefit health and wellness. The creation of discovery-based challenges that build on 
crowdsourcing and citizen science lessons learned from other areas of science and engineering, 
e.g., Galaxy Zoo [103] or National Weather Service's Cooperative Observing program [104] 
leads to the following finding and recommendation. 
 
Finding: AI competitions have already demonstrated their value in 1) encouraging the creation 
of large corpuses of data for broad use, and 2) demonstrating of the capabilities of AI in health, 
when provided data that are curated into a well labeled (namely high information content) 
format. 
 
Recommendation: Embrace the “crowdsourcing” movement that fueled this recent revolution in 
AI. 

● Support competitions created to advance our understanding of the nature of health and 
health care data.  

● Share data in public forums to engage scientists in helping find new discoveries that will 
benefit health. 
 

4.2 Deep Learning with Unlabeled Data 
  
The most intuitive training process for deep learning involves labeled data as in the examples 
presented in Section 2.   However, various techniques are in fact known for utilizing deep 
learning in contexts where labeled data are unavailable or impractical.  Three worth mentioning 
are reinforcement learning, auto-encoders, and generative adversarial networks.  Each of these in 
some sense creates a training set.   
 
In reinforcement learning, typically, the input to a deep neural net is a complex image or feature 
set, while the output is supposed to be a set of policies that maximize a score.  To train the net, 
we must provide an algorithm that evaluates and scores the output policies.  In an early 
successful example, the input images were the continuous screenshots of the Atari game Pong, 
while the output policies were joystick moves that the computer makes.  The score in this case is 
simply the Atari score displayed on the screen (which, in effect, the computer learns to read).  
So, in this example, as a substitute for labeled data, the computer simply plays the game many 
millions of times. 
 
Auto-encoders provide a methodology for autonomously learning to summarize a complex input 
signal (an image, for example) in terms of a small(er) number of features.  An auto-encoder 
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consists of two deep learning layers, back-to-back.  The encoder side gradually necks down 
(through many layers) to a feature layer.  The decoder side starts with these features and attempts 
to re-synthesize the original complex input.  The auto-encode is trained using (as before) a lot of 
unlabeled – real or simulated – images.  The training goal is to maximize the fidelity of the 
output image, as compared to the input image, after passing through the narrow neck of the 
feature vector.  This is compute-intensive and done off-line.  Once it is trained, we can use the 
auto-encoder in real time in two ways: It can produce feature vector output from complex input.  
And, it can synthesize a complex output from inputted feature vectors.  As a notional example in 
health care, we might use an auto-encoder to learn how to do differential diagnosis, where the 
small number of features at the narrow neck are the diagnoses, while the complex input (and 
synthesized output) are the continuous signals of heart monitors, etc. 
 
In generative adversarial networks (or other similar adversarial networks) we allow two deep 
neural nets to play against each other, so that each becomes good at countering the behavior of 
the other.  In a symmetric example, the two networks could be players in a two-person game 
(e.g., Go).  Playing against itself (actually an independent copy of itself), the network learns to 
become a good Go player.  In asymmetric examples, one network is often termed generative, the 
other discriminative.  The job of the generative network is to generate images (say) that “fool” 
the discriminative network, while the job of the discriminative network is not to be fooled.  As 
the two networks play against each other, both networks improve, leading to a trained 
discriminative network. One new application of the use of these networks in health is to generate 
simulated or synthetic electronic health records that carry the same properties as the original 
data, thus purportedly preserving the privacy of the subjects [105]. 
 
The use of AI methods for unlabeled data in health applications has had little attention to date.  
 
Finding:  Techniques for learning from unlabelled data could be helpful in addressing the issues 
with using data from a diverse set of sources, such as those discussed in Section 3. 
 
Recommendation:  Develop automated curation approaches for broadly based data collections 
to format them for AI tools—e.g., as with well labeled imagery.  
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5 LARGE SCALE HEALTH DATA  
 
An aspirational goal for health and health care is to amass large datasets (labeled and unlabeled) 
and systematically curated health data so that novel disease correlations can be identified, and 
people can be matched to the best treatments based on their specific health, life-experiences, and 
genetic profile.  AI holds the promise of integrating all of these data sources to develop medical 
breakthroughs and new insights on individual health and public health. However, major limiting 
factors will be the availability and accessibility of high quality data, and the ability of AI 
algorithms to function effectively and reliability on the complex data streams.   
 
It is estimated that 60% of premature deaths [106] are accounted for by social circumstances, 
environmental exposures, and behavioral patterns [107].  These three areas are a combination of 
experiences throughout our life based on where we were born, live, learn, work, and play. 
Frequently coined the social determinants of health [108], these include economic stability, 
neighborhood and physical environment, education, food, community and social context, and 
health care system (see Figure 5) [109]. 

Figure 5: Social Determinants of Health. Source: Figure modified from the Kaiser Family 
Foundation [110].      

Genetic information also must be included in this enterprise. However, it must be recognized that 
genetic sequencing continues to fall short in explaining many health conditions.  In some cases, 
human diseases are easily tracked to well-characterized mutations in very specific genes. But this 
seems to be the exception rather than rule. Sometimes, human illnesses result from combinations 
of genetic mutations, and in these cases, it is much more difficult to track down the genetic 
underpinnings of disease. But, in addition, the forces of chance are at play, and susceptibilities 
are being altered by behavior (e.g., exercise, diet, smoking, etc.) and environmental exposures 
(e.g., environmental toxins, noise pollution, industrial chemicals). 
 
The human genome sequence, comprised of ~3 billion DNA bases, was completely determined 
in 2003, almost 15 years ago now. A primary goal of the human genome sequencing project was 
to provide highly-accurate DNA sequence data to researchers who then would identify links 
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between DNA sequence variation and human disease. This was a visionary goal that was enabled 
by strides in inexpensive DNA sequencing. The vision was sound, as there already existed 
several well-proven links between specific DNA mutations and the manifestation of genetic 
diseases [111]. Given these past findings, many researchers expected that numerous single-
nucleotide polymorphisms (SNPs; differences between the genetic code of different human 
individuals) could be found to strongly correlate with additional human diseases, explaining why 
some people have them and other people don’t.  It has been found surprisingly rare that human 
disease can be linked to specific genetic mutations [112,113].  Ultimately, health is a function of 
the multiple factors of genetics, behavior, and environmental exposures.  
 
To gain a complete picture of health, data from genetics, health care delivery and outcomes, and 
the social determinants of health should be integrated. This could include, for example, data on 
exercise, addictions, diet, the reporting and sharing of family history, treatment experiences, and 
social consequences associated with a chronic disease, and the widespread collection of health-
relevant information from wearable devices and smart technology platform apps.  

5.1 Current Effort – All of Us Research Program 

A major initiative is just beginning in the U.S. to collect a massive amount of individual health 
data, including social behavioral information. This is a ten year, $1.5B National Institutes of 
Health (NIH) Precision Medicine Initiative (PMI) project called All of Us Research Program 
[114].   The goal is to develop a 1,000,000 person-plus cohort of individuals across the country 
willing to share their biology, lifestyle, and environment data for the purpose of research. A soft 
launch for this data collection has just begun at a collection of locations across the country (see 
Figure 6). The initial data collected on participants opting into the study will be surveys 
capturing 1) basic information on medical history and lifestyle (e.g., personal habits and overall 
health), 2) physical measurements (e.g., blood pressure, pulse, height, weight, and hip and waist 
circumference), 3) biosample assessments (blood and urine samples) and, in some cases, DNA 
testing with additional participant consent; and 4) electronic health records data capturing most 
fields of the common clinical dataset [115] (e.g., demographics, health care visits, diagnoses, 
procedures, medications, laboratory tests, and vital signs). The electronic health record data will 
be collected continuously over the 10 years of the study meaning participants recruited now will 
have 10 years of data associated with them. There are future goals of including all parts of the 
electronic health record and data from wireless sensor technologies (including data from 
mobile/wearable devices), and also geospatial/environmental data.  
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Figure 6:  All of Us Research Program initial data collection partners. Source: Teresa Zayas 
Cabán, briefing to JASON, June 2017. 

The $1.5B decade of funding for this PMI initiative has been authorized by Congress through the 
21st Century Cures Act [116].  While this may appear to provide the funding needed to create the 
data resources envisioned by PMI, it is likely that significantly more funding may be both 
necessary and warranted to successfully populate the database and distribute this data to the 
research community and public. We conclude the All of Us  Research Program discussion with 
some highlights and cautions regarding participation, privacy, and access. 

All of Us Research Program Participation, Privacy, and Access 

A major purpose of the All of Us Research Program will be to make the data available to 
participants, researchers, and the public.[154]  This raises issues of privacy concerns. PMI has 
recognized from the start of this initiative that no amount of de-identification (anonymization) of 
the data will guarantee the privacy protection of the participants, an issue noted by JASON 2014 
[7].  To build confidence around privacy, All of Us Research Program is laying the foundation 
for ensuring confidentiality, integrity and availability of the data. This is through the activities of 
two interagency working groups tasked with developing privacy and trust principles and data 
security policy principles and framework. [117]   

In order to acquire the various pieces of data for the All of Us Research Program, privacy 
guarantees must be provided to the participants. Participants may not want to share all of the 
required information and so a mechanism must be put into place to enable participants to choose 
which pieces of information can be released and to whom. On the one hand, novel methods to 
help participants understand informed consent are being developed based on research that has 
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been piloted by Sage Bionetworks [118].  These methods have now become part of the All of Us 
Research Program protocol [119].  The informed consent process will allow all participants to 
opt-in to all or only subsets of their data being included in the study and/or shared with research 
studies. Participants will also be able to change their preferences and opt-out at any time. On the 
other hand, parallel consent authorization processes need to be implemented properly. 

To pilot technology that will allow individuals to share their health data from EHRs and send it 
to researchers, NIH and ONC launched Sync for Science (S4S) [154].  S4S is testing several 
technology innovations.  The first is based on the emerging OAuth2.0 standard [120].  OAuth is 
a standard for delegation of access to online information. It is already in common use. For 
example, one may want to access a web service without being a locally authorized user of that 
service. In some cases, the service will offer to authenticate the user through their credentials 
used for another site typically a large provider. If the user agrees to this, they enter their 
credentials for the remote site. These credentials are then sent securely via OAuth to the remote 
site. The remote site then authenticates the user and may also query the use for which 
authorization is requested. If the user accedes a token is sent to the requesting site indicating the 
user is valid and has given permission to the site to authenticate them. From then on when the 
user wants access to the web service the authentication can be mediated through the remote 
provider. 

This approach makes it possible to create web services that can consolidate disparate pieces of 
data in one place. A common example is a site to let someone see their comprehensive financial 
position by interrogating all the financial service sites in which a user participates and providing 
a composite analysis of the data. In the past, this required having the user provide authentication 
data to the consolidation site so that it could perform remote queries. Using frameworks like 
OAuth the users need only authenticate themselves to the remote institutions once and establish a 
kind of digital contract that delegates their permission to acquire the latest financial information 
from the relevant financial service. Because no authentication information is provided the 
consolidation site can only query the limited piece of information (e.g., bank balance) and cannot 
access any other information. The exchanged tokens encode the level of permissions, so if a user 
does not want to give access to some account data, it is at their discretion not to do so. If the user 
decides not to share the information the permissions can always be revoked, and the tokens then 
become invalid. 

This approach could work well, in principle, for the sharing of health data. It has many of the 
attributes of “privacy bundles”, a concept that was introduced by JASON in their initial report on 
electronic health record systems [7].  JASON advocated the development of a fine-grained 
permission model for EHRs.  Because an EHR can be organized in a tree-like directory structure 
it is possible to assign different levels of privacy depending on the sensitivity of the information. 
But rather than have patients (participants in the context of All of Us Research Program) 
determine the level of privacy for each data element in an EHR, JASON advocated the 
development of privacy bundles wherein the patient can elect to share collections of related data 
but elect not to share others depending on the requestor. For example, one’s privacy policies for 
research projects may differ from those associated with an insurance company.  Or one may 
allow data associated with blood tests to be released but may refuse to share data associated with 
mental health. The use of OAuth is very much in keeping with this idea as it puts the data owner 
(e.g., the All of Us Research Program participant) in control. 
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OAuth may not be the ultimate solution, but it is the one being used despite some issues.  The 
first is security. OAuth makes use of a framework called Transport Layer Security (TLS). This is 
a widely-used set of protocols used to secure e-mail, web browsing etc. The problem is that there 
is no authoritative implementation of the protocols. There are commercial as well as open source 
versions. Some of these have suffered security breaches because the protocol was not 
implemented properly. Today there does not exist a provably secure version of TLS although 
there is active ongoing work by Amazon, Microsoft and others in creating one. The second issue 
is phishing. It would not be hard to create fake requests for OAuth tokens that look authentic. It 
may be necessary to have a secondary verification such as confirmation on one’s cell phone to 
verify that a request is valid. A greater challenge lies in the concept of implementing privacy 
bundles. Typical EHRs are paged documents. It is not easy to decompose the pages into the 
atomic data elements associated with a privacy bundle. For example, suppose a user does not 
want to provide a urine sample. Does this mean that all data on their EHR associated with kidney 
function should not be accessed? Or perhaps a user declines to share any data related to mental 
health, this could include many SNPs, blood tests, drug prescriptions etc.  How could this be 
achieved? Issues like these indicate the complexity of the task. 
 
The second S4S technology is the use of blockchains as a way of validating the provenance of 
data. This is similar to the approach taken by DeepMind, as discussed in Section 3.1.3. This is an 
excellent idea and may lay the groundwork for the more general use of block chain ledgers for 
EHRs [121].  The S4S pilot will be using the Health Level 7 (HL7®) Fast Healthcare 
Interoperability Resource (FHIR®) standard [122] as a way of encoding medical data. JASON 
has commented positively in the past on the use of  FHIR  and has endorsed the approach as a 
way to achieve health care data interoperability [8].  Because FHIR uses a mark-up language to 
describe the data, it is possible to easily decompose the data so that specific elements can be 
tracked and reports describing the chronology of the data elements can be readily assembled. 
Because the All of Us Research Program will be highly distributed, the problem arises that 
various pieces of data may become out of sync with one another. This could have deleterious 
consequences on the validity of the research data. One way to deal with this is to have a central 
point of access for the data but this may lead to significant inconvenience on the part of 
researchers who are distributed around the country. It would also create a single point of failure 
should the central repository suffer an interruption of service either due to a security incident or 
perhaps hardware failure. 

The idea of the blockchain is to create a distributed ledger where various accesses or changes in 
the ledger are indicated through the use of a set of interlinking hash codes (known as a Merkle 
tree [78]).  Using this type of data structure, it is possible to verify who made a change and what 
change was made. It is virtually impossible to corrupt the database because a change in the data 
causes changes in the hash codes. While it is theoretically possible to forge data with the same 
hash codes, to date there are no algorithms known that can do this in a reasonable period with 
current computing resources. In addition, even if one could forge the data, because the database 
is distributed and available to everyone it is virtually impossible to insert forgeries on all the 
copies. There is a special concurrence algorithm that allows all users to eventually learn which 
blockchain is the most recent making it unnecessary for all users of the ledger to perform specific 
synchronization of their copies. 

The use of blockchains would be particularly appropriate for health records in general. It solves 
the problem of trying to locate the most current records when a patient presents themselves at a 
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medical facility. By querying the blockchain all interactions would be recorded and the most 
recent data could be acquired. There are of course privacy issues here. Agreeing to the use of this 
technology means that a patient is tracked throughout the health care system. While this is 
clearly beneficial to the medical practitioner the patient must be informed, and may object to this 
type of EHR tracking.   

Beyond the implementations of the S4S technologies for a pilot set of EHRs in the All of Us 
Research Program, little information is available about how the program will meet their privacy 
and trust principles and their data security policy principles.         
  

5.2 Environmental Data –The Missing Data Stream 
  
If AI is going to be used to build a deeper understanding of disease, one needs to ensure that the 
training data incorporates all of the relevant data streams including environmental  
exposures [123].  One type of environmental exposure that is closely monitored by 
epidemiologists and clinicians is pathogen exposure. However, others such as exposures to UV 
radiation, industrial chemicals, air pollution, and extreme noise levels, are rarely discussed in the 
clinical setting.  It is interesting to think that someone might live right next to an industrial 
smokestack, yet this may never make it into their medical record because clinicians don’t 
typically ask questions related to environmental toxicology, and these have not been 
incorporated into most standard health questionnaires.  

Environmental exposures are broadly defined as exposure to chemicals, pathogens, noise, and 
energy sources (microwave, UV, ionizing radiation).  For many diseases, environmental 
exposures play a bigger role in health outcomes than genetics. Yet, the amount of attention paid 
to environmental factors is a fraction of the attention that has been devoted to genetics. There are 
well substantiated environmental risk factors for significant diseases such as many cancers [124] 
and autism [125,126], yet to our knowledge these known environmental components are not 
being tracked as part of most health data projects. Data in all of these areas should continue to be 
developed, but we find that absence of the environmental exposure datastream to be particularly 
troubling. 

5.2.1 Capturing data on toxin exposure 
An understanding of variation in toxicity exposure from town to town and even from home to 
home is needed. Measurements would ideally be taken in each person’s home. For instance, one 
person might have many pieces of furniture containing flame retardants [127], which have been 
linked to cancer, while another does not. At some level, this information can also be captured by 
measuring toxins in individuals’ bloodstreams.  One can imagine that members of some 
households may have higher levels of certain toxins than members of another household. 
 
Environmental exposure data can fairly easily be captured in health data projects. For instance:  

● Blood testing could include assays for common environmental toxins (e.g., lead, dioxin, 
etc.). Custom and commercial testing kits are available (for example [128] 

● Diet-related toxins should be considered (e.g., preservatives, pesticides, plastic residues 
from packaging, heavy metals). Patient questionnaires could be designed to include 
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questions about diet-related toxins, for instance the percentage of produce purchased that 
is organic, number of times per week that seafood [129] is consumed, etc. 

● Given the decaying infrastructure in the US [130] it would be worth monitoring water 
quality in people’s homes, and feeding this information into meta-datasets used for AI 
studies generating human disease correlates. There is some evidence that, in certain 
places in the country, water contaminants including lead fall outside of allowable  
bounds [131]. 

 
Collection of parallel city-scale environmental data should be incorporated at health study sites 
(for instance, the cities where the All of Us Research Program’s data collection centers are 
located).  This can be done by city-wide sensors, as described in the next section, or by having 
participants wear or carry devices that can take these measurements. Important things to measure 
would include UV intensity, chemical components of air pollution, allergens, noise, human 
pathogens, construction/demolition-related pollutants (lead and asbestos), and radiation.  

5.2.2 Environmental sensing at different geographic resolutions   

National, state, and local (county-based) efforts exist to collect and track environmental data. 
The Center for Disease Control (CDC), Environmental Protection Agency (EPA), Housing and 
Urban Development (HUD) and the Census Bureau have environmental data at various levels of 
geographic aggregation such as population characteristics, air quality, housing quality, climate, 
asthma, cancer, poisonings, opioid and other drug use and deaths, toxic releases, proximity to 
transportation infrastructure.  In 2009, CDC launched an on-line Environmental Public Health 
Tracking Network across 26 states that integrates the national data resources with environmental 
and health data available at the state and local levels [132].  These are important data sources to 
be used in building an understanding of the social determinants of health and the impact of the 
environment on health, but a finer level of geographic resolution in the capture of environmental 
exposure data likely will be needed to unravel the relationship between health status, genetics, 
environment and behaviors.  
 
To better understand the spatial and temporal variability of air pollution, NASA, in collaboration 
with the EPA, uses satellite data to provide estimates of pollutants for pixels of the scale of tens 
of kilometers squared [1331].  These space-based data products are validated via comparison to 
EPA in-situ monitoring stations [134] and then allow for a broader spatial perspective on the 
state of air quality in any location. These data products are mature and operationalized, with 
NASA and EPA presently making a push to train air quality forecasters and managers in their 
use. 
 
There are numerous academic projects underway to collect environmental data within urban 
settings. Advances in sensors and data technologies are enabling better measurement of 
environmental factors, particularly in the urban areas where some 80% of the US population 
resides.  Indeed, there is a flourishing of academic and for-profit efforts to “measure cities” and 
exploit the data so derived [135].  For instance, the “Array of Things” project is a network of 
urban sensors placed on telephone poles around Chicago [136] and the “Sounds of New York 
City” project [137] aims to measure and characterize the urban noise field with high spatial and 
temporal granularity through stationary in-situ sensors.  
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Similarly, networks of small sensors enable high-resolution measurements of ozone and carbon 
monoxide in Berkeley California [138] and a citizen science project is capturing particulates in 
Brooklyn, New York [139] which heretofore are derived only by uncertain modeling of transport 
from known sources such as roads and emission stacks.  Urban metagenomic studies are 
underway to characterize the space-time variation of the urban microbiome and  light  pollution 
in a given housing unit can be measured passively and synoptically by observations of building 
facades from urban vantage points. Mobile devices offer similar opportunities for environmental 
sensing. The fusion of such data with individual mobility tracks can provide individual 
exposures.   

Such environmental data should be collected as part of all big-data health and health care 
projects. Collection of these data streams is particularly practical in projects that are based out of 
specific medical centers, limiting the environmental data needed to a few particular cities. 
Studies should also be designed to place sensors within the homes of individuals, with care for 
privacy concerns, so that the home-to-home variability in environmental exposure can be 
evaluated. This brings us to the following findings and recommendations. 
 
Finding: AI application development requires training data, and will perform poorly when 
significant data streams are absent. While DNA is the blueprint for life, health outcomes are 
highly affected by environmental exposures and social behaviors. There is an imbalance in the 
effort to capture the diverse data needed for application of AI techniques to personalized 
medicine, with information on environmental toxicology and exposure particularly suffering. 
  

● Techniques exist to capture individual environmental exposures, e.g., blood toxin 
screening, diet questionnaires.  

● Techniques exist for environmental pathogen sensing.  
● Technologies exist that can capture environmental exposures geographically and create 

environment tracking systems. 
 
Recommendation: Support ambitious and creative collection of environmental exposure data. 

● Build toxin screening (e.g., dioxin, lead) into routine blood panels, and questions about 
diet and environmental toxins into health questionnaires. 

● Start urban sensing and tracking programs that align with the geographic areas for All of 
Us Research Program and similar projects in the future. 

● Support the development of wearable devices for the sensing of environmental toxins. 
● Support the development of broad-based pathogen sensing for rural and urban 

environments. 
● Develop protocols and IT capabilities to collect and  integrate the diverse data.  

  

http://beacon.berkeley.edu/Overview.aspx
http://beacon.berkeley.edu/Overview.aspx
https://arxiv.org/abs/1609.08780
https://arxiv.org/abs/1609.08780
https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-016-0168-z
https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-016-0168-z
https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-016-0168-z
https://link.springer.com/chapter/10.1007/978-3-319-25658-0_7
https://link.springer.com/chapter/10.1007/978-3-319-25658-0_7
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6 ISSUES FOR SUCCESS 
 

If AI applications are to advance beyond supporting specific diagnostics, and significantly enable 
the broader health and health care activities envisioned in Chapters 3 and 5, there are significant 
challenges to be addressed.  A key issue is the present implicit assumption that the capabilities of 
AI will automatically overcome the problems of large, complex and imperfect health data.  The 
perils of this assumption, and the associated need to address it with systematic approaches to 
both data management and transparency in algorithm development is discussed in this section.  A 
striking example of the issues that must be addressed is cited by Ching et al. [140]: 
 

“A motivating example … can be found in [a case] where a model trained to 
predict the likelihood of death from pneumonia assigned lower risk to patients 
with asthma, but only because such patients were treated as higher priority by 
the hospital. In the context of deep learning, understanding the basis of a 
model's output is particularly important as deep learning models are unusually 
susceptible to adversarial examples and can output confidence scores over 
99.99% for samples that resemble pure noise.” 
 

The broader point is that the “predicted outcome if nothing is done” is a very different 
thing than “predicted outcome if the usual system does its usual thing.”  Both could be 
useful, but to misinterpret one as the other is a deadly mistake. 
 
6.1 Plans for use of Legacy Health Records 
 
The promise of AI is tightly coupled to the availability of relevant data. In the health domains, 
there is an abundance of data. Electronic health records (EHRs) are part of this.  There has been 
growth in the adoption of “basic EHRs” (demographics, problems lists, medications, discharge 
summaries, lab reports, radiology tests, and diagnostic tests), but only about 40% of hospitals 
have comprehensive EHRs that contain clinician notes, full lab orders and reports, and decision 
guidelines around clinical practice and drug interactions [141].  In addition, the issue of 
interoperability of electronic health record systems between care settings remains elusive [142]. 
That has been a topic of prior JASON reports [7,8].  
 
Moreover, the utility of EHR data can be problematic beyond issues of completeness or 
interoperability, because it was not collected for the purpose or under the controls of use of 
research studies.   This raises the issue of the actual quality of the data in the EHR. If EHR data 
are to be used to support AI applications, understanding this quality, and how AI algorithms 
react given the quality issues will be important. To date, very little research has looked at this 
issue.  

A recent striking example of these concerns arises from a study that drew on EHRs from the UK 
National Health Service [143].  The example drew on a very large data base (over 12 million 
individual records) to assess the ability to predict cardiovascular disease (CVD).  The study 
addressed a serious issue, which is that standard assessments do poorly in predicting the patients 
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who eventually do have a cardiovascular event, and generate huge numbers of false positives that 
stymie effective follow on testing.  

The potential to improve risk assessment using machine learning was assessed using electronic 
health records for the time period between 2005 and 2015.  From the 12 million patient records, 
about 375,000 were suitable for use based on the requirement of complete records on 8 standard 
diagnostic indicators (i.e., gender, age, smoking, blood pressure, high and low-density 
cholesterol, body mass index, and diabetes) and no prior history of CVD.  About 25,000 patients 
within the study group suffered an event reported as a CVD event during the 10 years of the data 
records.  The ability of a standard risk assessment tool (ACC/ACA), and four machine learning 
approaches to predict which patients would have CVD events was evaluated.  Three quarters of 
the records were used as the training case for machine learning, and other quarter were used as 
the test case.  In addition, for the machine learning assessments, 22 more diagnostics available in 
the health records were added to the input data streams.  

The statistical results for the standard risk tool and the two best performing machine learning 
algorithms are summarized in Table 4.  The machine learning algorithms improve the sensitivity 
(true positives) by almost 5%, but increase the specificity (decrease the false positives) by less 
than 0.5%.  Given the poor baseline, the improvement in sensitivity still leaves much to be 
desired in correctly identifying patients at risk.  The very small improvement in specificity yields 
an insignificant impact on the serious issue of false positives.    
  
 
Table 4:  Comparison of the results using a standard risk assessment tool for cardiovascular 
disease with 8 diagnostic inputs to the two best performing machine learning algorithms 
(Gradient Boosting Machines and Neural Networks) using 30 diagnostic inputs, and trained on 
the EHR record of whether or not the patient had a CVD event during the 10 years of records.   
Source: Adapted from Weng et al 2017 [143]. 
 

Algorithms Total 
CVD 
Cases 

Cases 
Correct 
(True 

Positive) 

Cases 
Incorrect 

(False 
Negative) 

Sensitivity 
(True 

Positive) 

Total 
Non- 
Cases 

Non-Cases 
Correct 
(True 

Negative) 

Non-Cases 
Incorrect 

(False 
Positive) 

Specificity 
(True 

Negative) 

ACC/AHA  7,404 4,643 2,761 62.7% 75,585 53,106 22,479 70.3% 

ML: GBL  7,404 4,997 2,407 67.5% 75,585 53,458 22,127 70.7% 

ML: NN 7,404 4,998 2,406 67.5% 75,585 53,461 22,124 70.7% 
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There are many possible reasons for the limited improvements due to the use of machine 
learning.  One is simply that diagnostics used may not represent all the medical links to CVD:  
there is large individual variability in CVD prognosis that is not necessarily captured in EHRs or 
indeed for which diagnostics have not yet been identified [144].  Another possibility is that there 
may be errors in the data used for the training set.  Finally, there may even be errors in the 
diagnoses of patients suffering a CVD event, which is the training standard.  
 
Part of the basis for errors is the nature of the data in the EHRs. An excellent recent study 
compared cardiovascular risk factors and events from EHRs across a research network of six 
hospitals to data from a traditional longitudinal cardiovascular cohort study [155].  They point 
out that most studies looking at the quality of EHR data consider a single health care institution 
and compare EHR data to clinical care as the reference. In their study, EHR data was from six 
institutions and they compared data for the same patients derived from research methods in the 
cohort study, using these as the standard. The study found varying degrees of association 
between the data sources.  Examples of the sensitivity and specificity of the health records 
relative to the research study measurements include:  
 
                     Hypertension           sensitivity:  71.2%    specificity:  73.0% 
                     Obesity                    sensitivity:  30.9%    specificity:  97.5% 
                     Diabetes                   sensitivity:  77.5%    specificity:  95.6% 
  
The impact on the AI algorithms of possible error rates such as these in the training sets should 
be formally assessed.   
  
In any case, the results indicate the need for extreme care in using EHRs as training sets for AI, 
where correlations are established that may be meaningless or misleading if the training sets 
contain incorrect information or information with unexpected internal correlations.  The 
outcomes of the study using UK NHS data highlighted issues with using EHRs as inputs by 
assessing which factors in the expanded training sets for predicting CVD had the highest weights 
in the machine learning determinations, as illustrated in Table 5. 
 
The changes in the ranked risk factors for the two best performing machine learning algorithms 
appear almost idiosyncratic, consistent with the well-known ‘black-box’ nature of machine 
learning.  One observation is that the rankings aren’t readily explained in terms of the relative 
rates that each of these factors appear in the populations that did and did not experience a CVD 
event. It seems likely that there are redundant indicators of cardiovascular disease in the EHR 
and that they are reasonably highly correlated. Transparency in reports on AI algorithm 
development will be enhanced by such assessment and reporting of weighting factors.  
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Table 5:  Comparison of the top 10 risk factors in the standard ACC/AHA Tool and the most 
heavily weighted factors in the two best performing machine-learning algorithms.  Adapted from 
Weng et al 2017 [145]. 
 

 
  
The changes in the ranked risk factors for the two best performing machine learning algorithms 
appear almost idiosyncratic, consistent with the well-known ‘black-box’ nature of machine 
learning.  One observation is that the rankings aren’t readily explained in terms of the relative 
rates that each of these factors appear in the populations that did and did not experience a CVD 
event. It seems likely that there are redundant indicators of cardiovascular disease in the EHR 
and that they are reasonably highly correlated. Transparency in reports on AI algorithm 
development will be enhanced by such assessment and reporting of weighting factors.  
 
There is a great deal of interest in the potential of using the vast data sets represented in 
electronic health records (EHRs), in combination with AI algorithms, to draw insights about 
disease indicators.  However, while AI can perform with great accuracy when the relationship 
between diagnostic data and the diagnosis is well defined, when the relationship between the 
data and the diagnosis suffers from error, variability or difficulty in discrimination, AI 
algorithms also perform less well.  This creates challenges for developing AI for assessments 
based on data from EHRs, and foreshadows the opportunities (and challenges) of supplementing 
EHRs with extended patient reported data (see Section 3) as well as results from new diagnostic 
tools [146]. 
 
Finding:  Extreme care is needed in using EHRs as training sets for AI, where outputs may be 
useless or misleading if the training sets contain incorrect information or information with 
unexpected internal correlations. 
 

ACC/AHA Algorithm Machine-leamina Alaorithms 

Men Women ML: Gradient Boosting ML: Neural Networks 
Machines 

Age Age Age Atrial Fibrillation 

Total Cholesterol HDL Cholesterol Gender Ethnicity 

HDL Cholesterol Total Cholesterol Ethnicity Oral Corticosteroid 
Prescribed 

Smoking Smoking Smoking Age 

Aae x Total Cholesterol Aae X HDL Cholesterol HDL cholesterol Severe Mental Illness 

Treated Systolic Blood 
Pressure 

Age x Total Cholesterol Triglycerides SES: Townsend 
Deprivation Index 

Age x Smoking Treated Systolic Blood 
Pressure 

Total Cholesterol Chronic Kidney Disease 

Age X HDL Cholesterol Untreated Systolic 
Blood Pressure 

HbA1c BM/missing 

Untreated Systolic 
Blood Pressure 

Age x Smoking Systolic Blood Pressure Smoking 

Diabetes Diabetes SES: Townsend Gender 
Deprivation Index 
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 6.2 Evaluation 
 
The clinical trials, regulation, and acceptance by the medical profession, reviewed in Section 2, 
is only part of the story for adoption of AI applications. However, even to support the 
development of clinical trials and the assurance that the AI applications are legitimate, even for 
non-regulated applications, the technical soundness of the algorithms need to be confirmed. 
While AI algorithms such as deep learning can produce amazing results, work is needed to 
develop confidence that they will perform as required in situations where health and life are at 
risk. This is independent of the hope that there will be the kind of continued improvements that 
have occurred in image recognition or various aspects of natural language processing. The issues 
here are more pragmatic. 
      
First, no matter how carefully the training data has been assembled, there is the risk that it does 
not closely enough match what will be encountered in real application – the process of clinical 
trials outlined in Section 2.2 attempts to address such concerns. Another observation is that not 
all errors are equally important (or unimportant). As the system is being developed one typically 
uses error curves or recall/precision statistics, and without special treatment these evaluate all 
errors as the same. An example of bad errors was with a Google Photos release [147].  It is easy 
to imagine similarly unexpected, but possibly life-threatening errors in health applications.  
Assessment of algorithms must include questioning whether the observed error rates are like the 
expected rates, and identifying what types of errors the algorithm makes and why.   
      
In addition, things change over time. Even diseases change, and the diagnostic aids have to 
change with them. Sometimes the changes are relatively slow, as with the multi-decadal change 
in the kinds of pneumonia seen [148].   Sometimes new diseases pop up and require changes to 
previously sound diagnostic protocols. Thus, even if an application of deep learning were ideally 
suited to the real world when it is first released, over time the real world may drift and make a 
static application less and less effective.  Assessment of algorithms should include understanding 
how they will respond, or what indicators may be observed, if the input data characteristics begin 
to diverge from the original training sets.      
  
There has been recognition that guidance on reproducibility for computational methods is 
needed. Stodden [149] points out there are actually three important parts to consider:  empirical 
reproducibility, computational reproducibility, and statistical reproducibility. Empirical and 
statistical are being readily addressed by the research community, however computational is 
lacking.  This would include AI models and applications. A 2016 workshop held by American 
Association of the Advancement of Sciences (AAAS) stressed that data, code, and workflows 
should be available and cited [150].  They note:     
       

“Over the past two decades, computational methods have radically changed the ability of 
researchers from all areas of scholarship to process and analyze data and to simulate 
complex systems. But with these advances come challenges that are contributing to 
broader concerns over irreproducibility in the scholarly literature, among them the lack of 
transparency in disclosure of computational methods. Current reporting methods are often 
uneven, incomplete, and still evolving.”  
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They put forward a set of Reproducibility Principles which include: 
 

● Share data, software, workflows, and details of the computational environment that 
generate published findings in open trusted repositories.  

● Persistent links should appear in the published article and include a permanent identifier 
for data, code, and digital artifacts upon which the results depend.  

● To enable credit for shared digital scholarly objects, citation should be standard practice.  
● To facilitate reuse, adequately document digital scholarly artifacts.  
● Use Open Licensing when publishing digital scholarly objects.  
● Journals should conduct a reproducibility check as part of the publication process.  
● To better enable reproducibility across the scientific enterprise, funding agencies should 

instigate new research programs and pilot studies.  
 
They recognize that meeting these principles will be challenging and exceptions will be 
necessary with human subject research and proprietary codes. This seems to be exactly the 
situations faced in many of the AI in health application development.  
 
In 2016, the Association for Computing Machinery (ACM), one of the premier publishers of 
computational research approved a new policy to guide the review of “artifacts.” [151]   Artifacts 
are digital objects including computational models. The policy requires transparency around the 
creation of the models, including experiments, data, and model development. They differentiate 
repeatability, replication, and reproducibility and give review guidance for each. They even go so 
far as creating a badging system that could be placed on publications to give their pedigree with 
respect to these three topics.  
 
The ACM policy and the recommendations from the AAAS workshop have not yet been broadly 
implemented, but these are an excellent step forward on advising the peer-review process for 
large scale computational models. More discussion and guidance is needed, particularly in the 
context of AI applications in health. This discussion should include researchers, technologists, 
health professionals, industry, regulators, professional societies, and users/patients.  This leads to 
the following finding and recommendation.  
 
Findings: Methods to insure transparency by disclosure of large scale computational models and 
methods in the context of scholarly reproducibility are just beginning to be developed in the 
scientific community.   
 
Recommendation: Support the critical research that will ultimately enable the adoption of AI 
for public health, community health, and health care delivery. 

a. Encourage development and adoption of transparent processes and policies to 
ensure reproducibility for large scale computational models. 

b. To guard against the proliferation of misinformation in this emerging field, 
support the engagement of learned bodies to encourage and endorse best practices 
for deployment of AI applications in health. 
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7  FINDINGS AND RECOMMENDATIONS  
  

JASON was asked how AI could shape the future of public health, community health, and health 
care delivery. This report argues that AI application in health could help clinicians provide the 
best possible care, thus making high quality health care services available to all, and could 
increase people’s engagement in their own health.   
 
Overall, JASON finds that AI is beginning to play a growing role in transformative changes now 
underway in both health and health care, in and out of the clinical setting. At present the extent 
of the opportunities and limitations is just being explored.  However, there are significant 
challenges in this field that include: the acceptance of AI applications in clinical practice, 
initially to support diagnostics; ability to leverage the confluence of personal networked devices 
and AI tools; availability of quality training data from which to build and maintain AI 
applications in health; large-scale data collection to include missing data streams; building on the 
success in other domains, creating relevant AI competitions; executing and understanding the 
limitations of AI methods in health and health care applications. 
 
Here we provide the JASON findings and recommendations.  
 
1. AI Applications in Clinical Practice 
 
Findings:   

● The process of developing a new technique as an established standard of care uses the 
robust practice of peer-reviewed R&D, and can provide safeguards against the deceptive 
or poorly-validated use of AI algorithms. (Section 2.3) 

● The use of AI diagnostics as replacements for established steps in medical standards of 
care will require far more validation than the use of such diagnostics to provide 
supporting information that aids in decisions.  (Section 2.3) 

 
Recommendations:  

● Support work to prepare promising AI applications for the rigorous approval procedures 
needed for acceptance for clinical practice.  Create testing and validation approaches for 
AI algorithms to evaluate performance of the algorithms under conditions that differ from 
the training set. (Section 2.3) 

 
2. Confluence of AI and Smart Devices for Monitoring Health and Disease 
 
Findings:  

● Revolutionary changes in health and health care are already beginning in the use of smart 
devices to monitor individual health. Many of these developments are taking place 
outside of traditional diagnostic and clinical settings.  (Section 3.1) 

● In the future, AI and smart devices will become increasingly interdependent, including in 
health-related fields. On one hand, AI will be used to power many health-related mobile 
monitoring devices and apps. On the other hand, mobile devices will create massive 
datasets that, in theory, could open new possibilities in the development of AI-based 
health and health care tools.  (Section 3.1) 
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Recommendations:  
● Support the development of AI applications that can enhance the performance of new 

mobile monitoring devices and apps.  (Section 3.1) 
● Develop data infrastructure to capture and integrate data generated from smart devices to 

support AI applications.  (Section 3.1) 
● Require that development include approaches to insure privacy and transparency of data 

use.  (Section 3.1) 
● Track developments in foreign health care systems, looking for useful technologies and 

also technology failures. (Section 3.1) 
 
3. Create Comprehensive Training Databases of Health Data for AI Tool Development 
 
Findings:  

● The availability of and access to high quality data is critical in the development and 
ultimate implementation of AI applications in. (Section 4) 

○ AI algorithms based on high quality training sets have already demonstrated 
performance for medical image analysis at the level of the medical capability that 
is captured in their training data. (Section 2.1) 

○ AI algorithms cannot be expected to perform at a higher level than their training 
data, but should deliver the same standard of performance consistently for data 
within the training space. (Section 2.1) 

● Laudable goals for AI tools include accelerating the discovery of novel disease 
correlations and helping match people to the best treatments based on their specific 
health, life-experiences, and genetic profile.  Definition and integration of the data sets 
required to develop such AI tools is a major challenge.  (Section 4) 

● Extreme care is needed in using electronic health records (EHRs) as training sets for AI, 
where outputs may be useless or misleading if the training sets contain incorrect 
information or information with unexpected internal correlations.  (Section 6.1) 

● Techniques for learning from unlabelled data could be helpful in addressing the issues 
with using data from a diverse set of sources. (Section 4.2) 

 
Recommendations:  

● Support the development of and access to research databases of labeled and unlabeled 
health data for the development of AI applications in health. (Section 4)  

● Support investigations into how to incentivize the sharing of health data, and new 
paradigms for data ownership. (Section 4) 

● Support the assessment of AI algorithms trained with data labeled at levels that 
significantly exceed standard assessment, for instance the use of outputs from the next 
stage of diagnostics (e.g., use of biopsy results to label dermatological images). Section 
2.1)    

● Support research to characterize the tradeoffs between data quality, information content 
(complexity and diversity) and sample size, with the goal of enabling quantitative 
prediction of the quantity and quality of data needed to support a given AI application.  
(Section 4) 

● Identify and develop strategies to fill important data gaps for health. (Section 4) 
● Develop automated curation approaches for broadly based data collections to format 

them for AI tools, e.g., as with well labeled imagery. (Section 4.2) 
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4. Fill in Critical Missing Data Gaps 
 
 Findings:  

● AI application development requires training data, and will perform poorly when 
significant data streams are absent. While DNA is the blueprint for life, health outcomes 
are highly affected by environmental exposures and social behaviors. There is an 
imbalance in the effort to capture the diverse data needed for application of AI 
techniques to precision medicine, with information on environmental toxicology and 
exposure particularly suffering: (Section 5.2.2)   

○ Techniques exist to capture individual environmental exposures, e.g., blood toxin 
screening, diet questionnaires.  

○ Techniques exist for environmental pathogen sensing.  
○ Technologies exist that can capture environmental exposures geographically and 

create environment tracking systems. 
 
Recommendations:  

● Support ambitious and creative collection of environmental exposure data: (Section 5.2.2) 
○ Build toxin screening (e.g., dioxin, lead) into routine blood panels, and questions 

about diet and environmental toxins into health questionnaires. 
○ Start urban sensing and tracking programs that align with the geographic areas for 

the All of Us Research Program and similar projects in the future. 
○ Support the development of wearable devices for the sensing of environmental 

toxins. 
○ Support the development of broad-based pathogen sensing for rural and urban 

environments. 
○ Develop protocols and IT capabilities to collect and integrate the diverse data.  

 
5. Embrace the Crowdsourcing Movement to Support AI development and Data Generation 
 
Finding: AI competitions have already demonstrated their value in 1) encouraging the creation 
of large corpuses of data for broad use, and 2) demonstrating the capabilities of AI in health, 
when provided data that are curated into a well labeled (namely high information content) 
format.  (Section 4.12) 
 
Recommendations:  

● Support competitions created to advance our understanding of the nature of health 
and health care data. (Section 4.12) 

● Share data in public forums to engage scientists in finding new discoveries that will 
benefit health. (Section 4.12) 

 
6. Understand the Limitations of AI Methods in Health and Health Care Applications 
 
Findings: 

● There is potential for the proliferation of misinformation that could cause harm or impede 
the adoption of AI applications for health. Websites, Apps, and companies have already 
emerged that appear questionable based on information available.  (Section 3.2) 
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● Methods to insure transparency in disclosure of large scale computational models and 
methods in the context of scholarly reproducibility are just beginning to be developed in 
the scientific community.  (Section 6.2) 

 
Recommendations:  
 

● Support the development of critical safeguards that are essential to enable the adoption of 
AI for public health, community health, and health care delivery: 

○ Encourage development and adoption of transparent processes and policies to 
ensure reproducibility for large scale computational models.  (Section 6.2) 

○ To guard against the proliferation of misinformation in this emerging field, 
support the engagement of learned bodies to encourage and endorse best practices 
for deployment of AI applications in health.  (Sections 3.2 and 6.2) 
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8 EPILOGUE 
 

We conclude with some thoughts about human perception versus digital data in a timeline further 
out than has been covered in this report. One of the major obstacles to be overcome in making health 
and health-care information useful is the gap between human cognition and digital data. Information 
concerning an individual patient is mostly obtained in forms designed to be accessible to medical 
personnel.  Typical data may consist of X-ray or MRI or ultrasound pictures of the patient, visual 
records of heart or lung function varying with time, or verbal descriptions of the patient as seen by a 
nurse or a doctor.  On the other hand, when data are stored in information systems and used, in 
medical research or to develop treatment guidelines, it is often reduced to statistical information 
which is predominantly digital. The conversion of analog input into digital output is a burdensome 
task, and may result in a loss of significant information that would have been helpful to the user. 
  
When we consider the design of future health care information systems that might be more user-
friendly both to providers and to users of the information, two questions need to be answered, one 
concerned with computer-science and one concerned with fundamental biology.  The computer-
science question is, whether an entire medical database can be created and used with the data 
maintained in a form accessible to human cognition, avoiding the cumbersome and costly translation 
from analog to digital.  The fundamental biology question is whether the natural coding of 
information in a human brain is basically analog and not digital.  We do not claim to know the 
answers to these questions, but we are inclined to guess that the answers to both will be affirmative. 
  
Two known facts support the affirmative answers. One known fact is a mathematical theorem 
proved by Marian Pour-El and Ian Richards in 1978 [152].  The theorem says that analog computing 
is in a precise mathematical sense more powerful than digital computing.  Pour-El and Richards 
display a number that is computable with a simple analog device but not computable with any digital 
device as defined by Alan Turing in his famous paper, ``On Computable Numbers'' in 1937 [153].  
Their discovery gives us reason to hope that a new generation of computers operating as analog 
devices may give us databases more user-friendly to us than our present-day digital databases. The 
second fact, supporting the view that the human brain operates as an analog device, is our subjective 
experience of perception and memory.  We experience the visual operation of our brains as a rapid 
and effortless scanning of pictures moving in space and time.  To our subjective view, the brain 
appears to be primarily a device for the direct comparison of images. We see the images as whole 
scenes with shape and style, not as collections of pixels.   Our perception of continuously moving 
images does not prove that our brain is an analog device, but it makes this a plausible hypothesis. 
  
This JASON report is concerned with practical problems of management of health and health care 
information with a medium-range perspective, looking ahead only about thirty years.   It is unlikely 
that a fundamental shift of our computing technology from digital to analog could occur within a 
time as short as thirty years.  But if we look ahead further, for fifty or a hundred years into the future, 
such a fundamental shift becomes possible or even likely.  While making plans for the near-term 
future, it would be wise to keep in mind the more adventurous possibilities that new discoveries in 
biology and neurology are likely to bring later. One possibility to be taken seriously is a complete 
change of databases from digital to analog data, making them more user-friendly to expert and non-
expert users. 
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APPENDIX - Statement of Work 
 
The overarching issue is to study how Artificial Intelligence (AI) applied to large sets of 
complex data could be used to improve decision making and action in health applications. 
JASON 2016 defined AI as intelligence exhibited by machines and that encompasses areas of 
R&D practiced by computational Computer Vision, Natural Language Processing (NLP), 
Robotics (including Human-Robot Interactions), Search and Planning, Multi-agent Systems, 
Social Media Analysis (including Crowdsourcing), and Knowledge Representation and 
Reasoning (KRR). Advanced statistics and the field of Machine Learning (ML) are the 
foundational basis for AI.  
 
Understanding the full impact that artificial intelligence can have on health and health care is 
important.  
 
The Agency for Healthcare Research and Quality (AHRQ), the Office of the National 
Coordinator for Health IT (ONC), and the Robert Wood Johnson Foundation are asking JASON 
to consider the following questions about how artificial intelligence could shape the future of 
public health, community health, and health care delivery from a personal level to a system level, 
and provide their insight. Understanding the opportunities and considerations can better prepare 
and inform developers and policy makers and promote the general welfare of health care 
consumers and the public.  
 
Scope:  
The following questions will be posed to the JASON group for further refinement in 
collaboration with all stakeholders.  
 

1. AI Opportunities: 
a. Ways to Improve Health and Health Care  

i. In what ways might artificial intelligence advance efforts to improve 
individual health, health care (care of individuals), and community health 
(health status of sub-populations)? 

ii. What evidence exists regarding artificial intelligence’s relevance for 
health, health care, and community health? What is the demonstrated 
state-of-the art in these areas? 

iii. What are the most high-value areas (example, reducing the cost of 
expensive treatments, prevention of mortality or morbidity in 
disproportionately affected populations, improvement in productivity due 
to better health, or focusing on risk mitigation where the impacted 
population is large) where artificial intelligence could be focused to 
contribute quickly and efficiently? 

iv. How can the benefits of artificial intelligence applications be defined and 
assessed? 

2. AI Considerations: 
a. Technical  

i. What are the considerations for the data sources needed to support the 
development of artificial intelligence programs for health and health care? 
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For example, what is the needed data quality, breadth, and depth necessary 
to support the deployment of appropriate artificial intelligence technology 
for health and health care? 

ii. How does research in computational, statistical, and data sciences need to 
advance in order for these technologies to reach their fullest potential? 

iii. What technology barriers may arise in the technology adoption associated 
with artificial intelligence for health and health care? How can these be 
mitigated?  

b. Ethical/Legal  
i. What are the potential unintended consequences, including real or 

perceived dangers, of artificial intelligence focused on improving health 
and health care? 

ii. What are the potential risks of artificial intelligence inadvertently 
exacerbating health inequalities? 

c. Workforce 
i. What workforce changes may be needed to ensure effective broad-based 

adoption of data-rich artificial intelligence applications?  
3. AI Implementation  

a. Are there relevant projects of AI in individual health, community health and 
health care that currently demonstrate the potential value of AI and feasibility of 
scale-up? 

b.  Depending on relevant projects to learn more, have other industries successfully 
utilized AI which might translate well to individual health, community health, and 
health care? Are there similar or dissimilar facets of implementation barriers that 
exist for AI in individual health, community health, and health care?  
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