

# Gas Centrifuge Technology: Proliferation Concerns and International Safeguards

Brian D. Boyer


**Los Alamos National Laboratory** 

Trinity Section American Nuclear Society
Santa Fe, NM
November 7, 2014

Acknowledgment to

M. Rosenthal (BNL), J.M. Whitaker (ORNL), H. Wood (UVA), O. Heinonen (Harvard Belfer School), B. Bush (IAEA-Ret.), C. Bathke (LANL) for sources of ideas, information, and knowledge

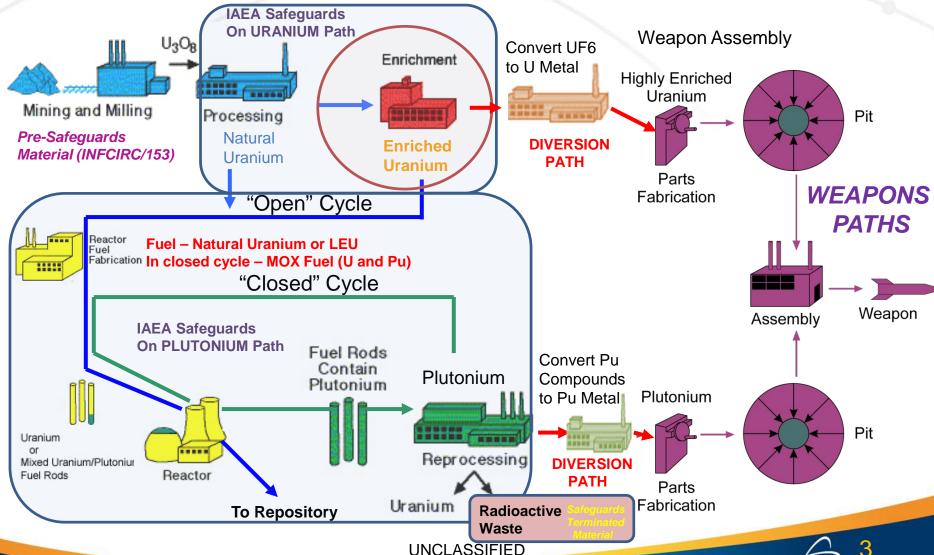




# Enrichment / Proliferation / Safeguards



- Enrichment technology The centrifuge story
- Proliferation of technology Global Networks
- IAEA Safeguards The NPT Bargain





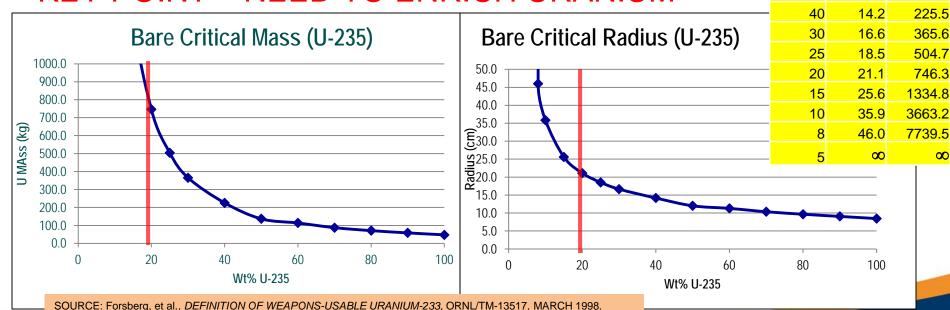





# The Nuclear Fuel Cycle and Proliferation Paths to WMDs






# Safeguards Concerns of U-235 IAEA Significant Quantities/Timeliness

**DNLEU** --- 75 kg U-235 in U (Wt% of U-235 <20%)

timeliness = 1 year (NU = 0.711% U-235)

**HEU** --- 25 kg U-235 in U (Wt% of U-235 =>20%) timeliness = 1 month (unirradiated) / 3 months (irradiated)

### **KEY POINT – NEED TO ENRICH URANIUM**



UNCLASSIFIED





BARE CRITICAL

**RADIUS & MASS** 

8.5

9.7

10.4 11.3

12.0

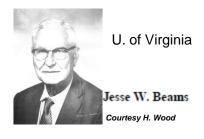
47.5

58.4

70.9

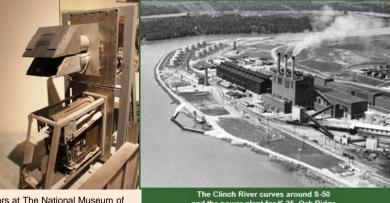
87.5

113.5


136.7

Weight

% U235 R (cm) 100


# **Uranium Enrichment: Review of History**

- Centrifuge isotope separation suggested by Lindemann/Aston (1919)
- 1934 1st experiments at UVA in 1934 by Prof. Jesse Beams (CI)
- Uranium (U-238 99.3%, U-235 0.711%)...U.S. needs enriched U-235
  - Manhattan Project centrifuge efforts were unsuccessful
  - Manhattan Project enriched with varying success by
    - Thermal Diffusion (S-50) Abandoned in 1945
    - EMIS Electromagnetic Isotope Separation (Y-12)
    - Gaseous Diffusion (K-25)
  - Oak Ridge used 1/7 of the electricity of the United States



Site of Massive Gaseous Diffusion Plant in FRANCE GB I - Pierrelatte, FRANCE - from SNCF passenger train

(Photo - B. Boyer 2/1/08)



EMIS Collectors at The National Museum of Nuclear Science & History - Albuquerque, (Photo - B. Boyer 9/11/09)

and the power plant for K-25, Oak Ridge

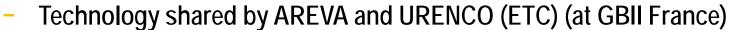
SOURCE: The Manhattan Project an interactive history https://www.osti.gov/manhattan-project-history/Events/1942-

UNULAUGII ILL





## **Uranium Enrichment: Post War Advances**


After the war gaseous diffusion process used in the West



USSR developed centrifuges – how?

Gernot Zippe over Oak Ridge Courtesy H. Wood

- Used captured Third Reich scientists G. Zippe (Universität Wien) Luftwaffe
- Europe successful with centrifuges in 1970's URENCO
- Operating URENCO plants world leader in enrichment
  - Capenhurst UK
  - Almelo NL
  - Gronau GFR
  - Eunice, NM USA



Flirtations with laser isotope separation (LIS) enrichment





# Centrifuges/21st Century Technology for Enrichment Why Such Proliferation Concerns/Daily Headlines?

- "Rule of Thumb" on Enrichment capacity
  - ~5 MTSWU/yr capacity to go from NU to HEU (90%)
- Key Safeguards Issues
  - Diversion of Nuclear Material
  - Misuse of facility to produce enriched uranium
  - Undeclared capacity in undeclared plants
- Aspects of concern with Gas Centrifuge
  - Compare to Gaseous Diffusion Plant (GDP) Energy use and size
     1/50<sup>th</sup> electrical consumption less waste heat /smaller footprint
  - Compact size of centrifuges 1-3m tall / 0.5m Dia. tubes
  - Small specific inventory / Short equilibrium time









## Centrifuges – Technology Diffusion

- Technology was limited to NWS and NPT NNWS
  - Khan network starting in Pakistan changed this status quo
  - Iran moved to acquire technology and build own industry
  - Libya, DPRK,…?



- Nuclear Supplier Group Trigger List / Dual Use Items
- Iran operates declared plants with capability to make
  - 3-5% enrichment for LEU PWR reactor fuel (Bushehr)
  - 19.75% enrichment (almost HEU = 20%) for TRR
- Naval reactor potential loophole in NPT
  - INFCIRC/153 Description of "non-proscribed military activity"
  - Military desire of HEU for submarine fuel

Para 14.a.1

THE STRUCTURE AND CONTENT OF AGREEMENTS BETWEEN THE AGENCY AND STATES REQUIRED IN CONNECTION WITH THE TREATY ON THE NON-PROLIFERATION OF NUCLEAR WEAPONS







# Details of How Centrifuges Work

Enriching Power = Separative Work Unit (SWU) = ΔU ~ ZV<sup>2</sup>

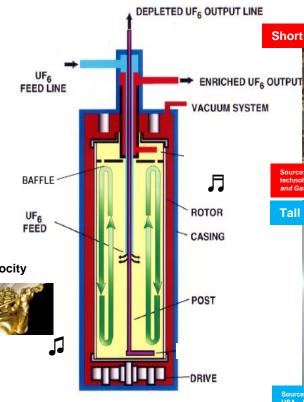
#### $\Delta U(max) = SWU$ of a machine

- 1. ΔU~ proportional to Length (Z)
- 2.  $\Delta U \sim$  proportional to  $V^2$
- 3.  $\Delta U$  is independent of width (a)



frequency =  $\frac{|velo\,cit\,y|}{2\Pi|radius|}$ 

Relationship of Frequency and Velocity


#### V(max) = Maximum velocity of a machine

- 1. **T** = Tensile Strength (kN/m<sup>2</sup>)
- 2.  $\rho$  = Density (kg/m<sup>3</sup>)
- 3. Engineering need = strong but light materials
- 4. Al to Maraging Steel to Carbon Fiber

Fast – Tall – Strong - Light

SOURCE:

SAFEGUARDS TRAINING COURSE NUCLEAR MATERIAL SAFEGUARDS FOR URANIUM ENRICHMENT PLANTS ISPO-347/R8 (JUNE 2007) ORNL

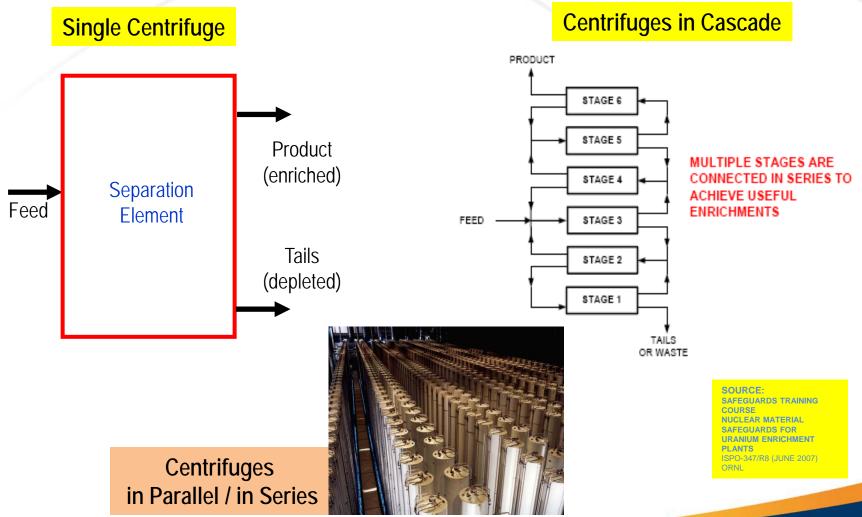


Source: ORNL - SAFEGUARDS TRAINING COURSE NUCLEAR MATERIAL SAFEGUARDS FOR URANIUM ENRICHMENT PLANTS Short Subcritical Centrifuges - RUSSIA

6 OUTPUT

Source: Zippe G., Development and status of gas centrifuge technology, Proc. 7th Workshop on Separation Phenomena in Liquids and Gases, July 24-28, 2000, Moscow, Russia, pp.35-53.

Tall Ultra-Centrifuges - URENCO




Source: FCIX 2013 Presentation: New Construction at LES/URENCO USA, Jay Laughlin Chief Nuclear Officer LES/URENCO USA June 12, 2013





# Centrifuges and Cascades: Enrichment Plant Theory





**UNCLASSIFIED** 

SOURCE: DOE

## What is a UF6 Cylinder

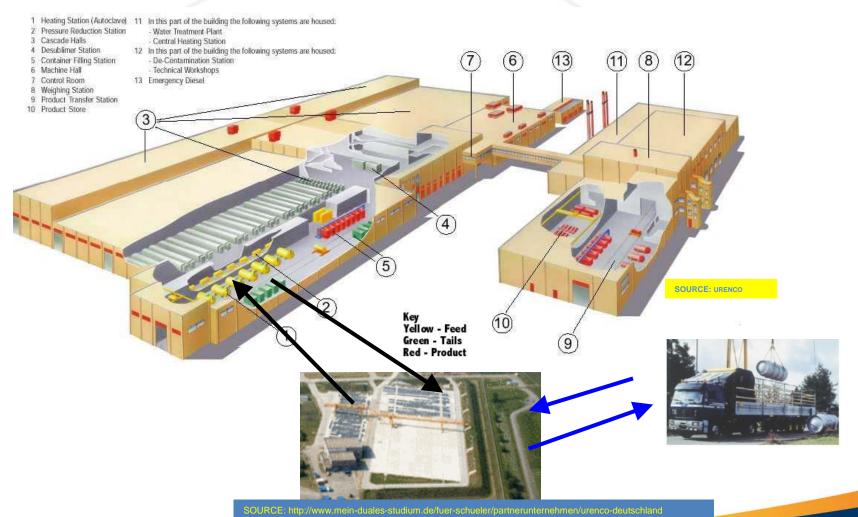
Where Inspectors Find/Verify U and U-235 Material

30B Product (2.5 ton)- Product



5a (25 kg) - HEU - Criticality Safe

48Y (14 ton) - Feed and Tails










# Gas Centrifuge Enrichment Plant (GCEP) Process and Storage Areas







# IAEA Detection Goals - Perspective Safeguards Focus on Iran's Paths?

- Timely detection of the misuse of the facility to produce HEU (or any UF6 at higher-thandeclared enrichment levels)
- 2. Timely detection of diversion of declared UF6
- 3. Timely detection of the misuse of the facility to produce undeclared LEU (at declared enrichment levels) from undeclared feed
  - Obtain undeclared material (NU)
  - Enrich to LEU to be feed for clandestine HEU plant





## Bushehr-1 (PWR/VVER-1000 Hybrid) Fuel = 3.5% U-235 Enriched

- Iran's VVER-1000 Reactor
  - Maximum enriched 3.62% Russian fuel
- Set up declared GCEPs capacity for
  - 3-5% enriched Fuel



Iran's Bushehr nuclear power plant.
Photograph: Abedin Taherkenareh/EPA

## SWUs for production of HEU ~(90%) from LEU?

SWU Calculator "Back of the Envelope EXCEL Model"

SOURCE:
SAFEGUARDS TRAINING COURSE
NUCLEAR MATERIAL.
SAFEGUARDS FOR
URANUM ENRICHMENT PLANTS
ISPO-347/R8 (JUNE 2007) ORNIL.

| NU to  | LEU    |                 | LEU to | HEU(9  | 0)       | NU to F | 1EU(90 <mark>)</mark> |                   |
|--------|--------|-----------------|--------|--------|----------|---------|-----------------------|-------------------|
| XF     | 0.71%  |                 | XF     | 3.50%  |          | XF      | 0.71%                 |                   |
| XP     | 3.50%  |                 | XP     | 90.00% |          | XP      | 90.00%                |                   |
| XW     | 0.42%  |                 | XW     | 0.42%  |          | XW      | 0.42%                 |                   |
| F=     | 60.85  | kgU235          | F=     | 28.30  | kgU235   | F=      | 60.85                 | kgU235            |
| P=     | 28.30  | kgU235          | P=     | 25.02  | kgU235   | P=      | 25.02                 | kgU235            |
| W=     | 32.55  | kgU235          | W=     | 3.28   | kgU235   | W=      | 35.83                 | kgU235            |
| SQ HEU | 1.13   | SQ HEU          | SQ HEU | 1.00   | SQ HEU   | SQ HEU  | 1.00                  | SQ HEU            |
| ΔU     | 2.85   | MTSWU           | ΔU     | 1.79   | MTSWU    | ΔU      | 4.64                  | MTSWU             |
|        | 61.42% | <b>TOTAL SV</b> | VUs    | 38.58% | TOTAL SV | NUs     | 100%                  | <b>TOTAL SWUs</b> |

Source - B. Boyer Calculations (9/2014)

**UNCLASSIFIED** 

KEY
CALCULATION
POINT:
61% of SWUs
Done in LEU
Stage



## Teheran Research Reactor (TRR) Fuel = 19.75% U-235 Enriched

- Iran declares need for fuel for TRR
  - 19.75% enriched Fuel produce medical isotopes
- Sets up declared GCEPs capacity for
  - 19.75% enriched Fuel

SWUs for production of HEU? ~(90%)

SWU Calculator "Back of the Envelope EXCEL Model"

SOURCE: SAFEGUARDS TRAINING COURSE NUCLEAR MATERIAL SAFEGUARDS FOR URANIUM ENRICHMENT PLANTS ISPO-347/RB (JUNE 2007) ORNIL The Tehran Research Reactor. http://iranprimer.usip.org/blog/2014/mar/06/realistic-options-final-nuclear-deal

| NU to LEU (19.75) | LEU(19.75) to HEU(90) | NU to HEU(90) |
|-------------------|-----------------------|---------------|

|        | •     | •        |        | •     |          | •      |       | • •               |
|--------|-------|----------|--------|-------|----------|--------|-------|-------------------|
| XF     | 0.01  |          | XF     | 0.20  |          | XF     | 0.01  |                   |
| XP     | 0.20  |          | XP     | 0.90  |          | XP     | 0.90  |                   |
| XW     | 0.00  |          | XW     | 0.00  |          | XW     | 0.00  |                   |
| F=     | 60.85 | kgU235   | F=     | 25.44 | kgU235   | F=     | 60.85 | kgU235            |
| P=     | 25.44 | kgU235   | P=     | 25.02 | kgU235   | P=     | 25.02 | kgU235            |
| W=     | 35.40 | kgU235   | W=     | 0.42  | kgU235   | W=     | 35.83 | kgU235            |
| SQ HEU | 1.02  | SQ HEU   | SQ HEU | 1.00  | SQ HEU   | SQ HEU | 1.00  | SQ HEU            |
| ΔU     | 4.15  | MTSWU    | ΔU     | 0.49  | MTSWU    | ΔU     | 4.64  | MTSWU             |
|        | 0.89  | TOTAL SV | /Us    | 0.11  | TOTAL SV | VUs    | 1.00  | <b>TOTAL SWUs</b> |
|        |       |          |        |       |          |        |       |                   |

KEY CALCULATION POINT:

89% of SWUs

**Done in TRR Fuel** 

(2-Steps)

LEU reactor fuel and 19.75%

Source - B. Boyer Calculations (9/2014)





## Non-application of Safeguards ... In Non-Peaceful Activities

### Model Safeguards Agreement (1972) - INFCIRC/153(Corr.) Para. 14

The State shall inform the Agency of the activity, making it clear:

- i. That the use of the *nuclear material* in a **non-proscribed military activity** will not be in conflict with an undertaking the State may have given and in respect of which Agency safeguards apply, that the *nuclear material* will be used only in a peaceful nuclear activity; and
- ii. That during the period of <u>non-application of safeguards</u> the <u>nuclear material</u> will not be used for the production of nuclear weapons or other nuclear explosive devices;

Information Source: Nuclear submarine program surfaces in Iran
Posted on July 23, 2012 by Power & Policy By Olli J. Heinonen (Harvard) Former IAEA Deputy DG-SG



http://www.css11.navy.mil/Subs/Asheville.htm Toured in August 2011 at San Diego by LANL's R. Wallace, C. Murphy and B. Boyer



(AP Photo/Iranian Defense Ministry, Vahid Reza Alaei, File)



Photo – B. Boyer July 2013)

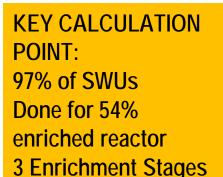






# Iran's Navy Fuel = 5-90%? U-235 Enriched

- Suppose Iran declares need for fuel for naval reactors
  - Can set up need for 50-60% (HEU) Fuel
- Navy enrichment/fuels program
  - Non-application of safeguards NPT
  - Plants unsafeguarded by IAEA?
  - Need about 5-6 SQs of material (50%-90% perhaps?)




SWU Calculator "Back of the Envelope EXCEL Model"

| NU to F | HEU (54  | .)              | HEU(5  | 54) to H | EU(90)          | NU     | J to HE  | U(90)      |
|---------|----------|-----------------|--------|----------|-----------------|--------|----------|------------|
| XF      | 0.71%    |                 | XF     | 54.00%   |                 | XF     | 0.71%    |            |
| XP      | 54.00%   |                 | XP     | 90.00%   |                 | XP     | 90.00%   |            |
| XW      | 0.42%    |                 | XW     | 0.42%    |                 | XW     | 0.42%    |            |
| F=      | 60.84606 | kgU235          | F=     | 25.09845 | kgU235          | F=     | 60.84606 | kgU235     |
| P=      | 25.09845 | kgU235          | P=     | 25.02    | kgU235          | P=     | 25.02    | kgU235     |
| W=      | 35.74761 | kgU235          | W=     | 0.07845  | kgU235          | W=     | 35.82606 | kgU235     |
| SQ HEU  | 1.003938 | SQ HEU          | SQ HEU | 1.0008   | SQ HEU          | SQ HEU | 1.0008   | SQ HEU     |
| ΔU      | 4.486542 | MTSWU           | ΔU     | 0.149555 | MTSWU           | ΔU     | 4.636098 | MTSWU      |
|         | 96.77%   | <b>TOTAL SW</b> | /Us    | 3.23%    | <b>TOTAL SW</b> | /Us    | 100%     | TOTAL SWUs |

Source - B. Boyer Calculations (9/2014)

**UNCLASSIFIED** 



SOURCE: SAFEGUARDS TRAINING COURSE NUCLEAR MATERIAL SAFEGUARDS FOR URANIUM ENRICHMENT PLANTS ISPO-347/R8 (JUNE 2007) ORNL





# The Iran Snapshot – Latest Status of UF6

Source: IAEA GOV/2014/28

(Derestricted BOG 4 June 2014) Date: 23 May 2014

http://www.iaea.org/newscenter/focus/iran/iae a-and-iran-iaea-reports

**ISFAHAN** 









|                 | Conversion NU<br>UF6 | UF6 Feed to<br>GCEPs | UF6 GCEPs<br>Product | UF6 GCEPs<br>Tails |
|-----------------|----------------------|----------------------|----------------------|--------------------|
| kg UF6          | 550000               | 134843               | 11870                | 122973             |
| kg U            | 371855               | 91167                | 8025                 | 83142              |
| Enrichment      | 0.711%               | 0.711%               | 3.49%                | 0.49%              |
| kg U-235        | 2643.9               | 648.2                | 280.1                | 404.1              |
| SQ DNLEU U-235  | 35.3                 | 8.6                  | 3.7                  | 5.4                |
| SQ U-235 (25kg) | 105.8                | 25.9                 | 11.5                 | 16.2               |
| Cylinders 48 in | 44.0                 | 10.8                 |                      | 9.8                |
| Cylinders 30 in |                      |                      | 5.3                  |                    |

#### Questions for IAEA BOG and UNSC

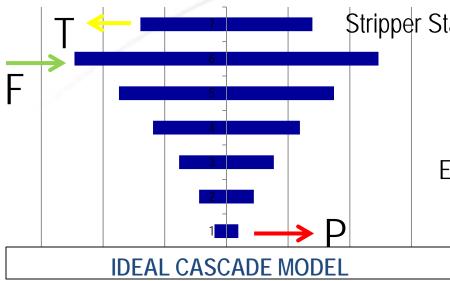
- Iran has enough LEU feed for producing SQ of HEU
- ~2/3 to 3/4 of the SWU for getting 90% HEU complete in LEU
- Will Iran divert I FU to a Plant "X"?
- Will Iran breakout at Natanz, etc... or at a possible secret Plant "X"?
- Can Iran make HEU? Options? Naval reactors?
- Less than optimal LEU production so far but on a learning curve Source - B. Boyer Calculations of IAEA data (6/2014 and 9/2014)

UNCLASSIFIED



Isfahan **EUPP and UCF plants** 

#### **Natanz GCEP**








# Ideal Cascade – Use of IAEA Board Reports

### **Scale of Operations**



Stripper Stage (1)

1 Centrifuge = 1 SWU/yr

Enricher Stages (5 + 1 = 6)

Ideal Cascade "Back of the Envelope EXCEL Model"



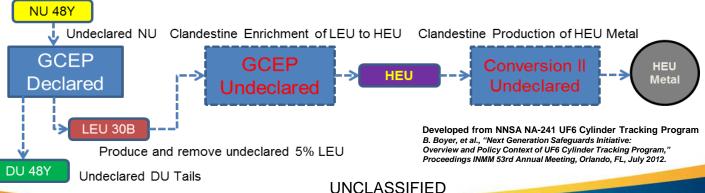
- Natanz Model estimated from BOG Reports
- Assume ~50 cascades of ~200 centrifuges

| SOURCE:       |                   |
|---------------|-------------------|
| SAFEGUARD     | S TRAINING COURSE |
| NUCLEAR MA    | TERIAL            |
| SAFEGUARD     | S FOR             |
| URANIUM EN    | RICHMENT PLANTS   |
| ISPO-347/R8 ( | JUNE 2007) ORNL   |

| F= | 26382 kgU/yr | 188 kgU235/yr  | 0.711% <b>NU</b> |
|----|--------------|----------------|------------------|
| P= | 2552 kgU/yr  | 88.2 kgU235/yr | 3.5% LEU         |
| W= | 23829 kgU/yr | 101 kgU235/yr  | 0.42% <b>DU</b>  |

**IDEAL CASCADE MODEL**  $\sim 50 \times \sim 200 =$ 

Source - B. Boyer Calculations (9/2014)






## **Diversion/Breakout/Clandestine Pathways**

## **Acquisition Pathways?**

- 1) Misuse at Natanz of declared ~50 cascades x ~200 machines
  - Take LEU and enrich to HEU up to 4 stages total
- 2) Divert LEU to Plant "X" clandestine HEU enrichment plant
- 3) Divert of tails to Plant "Y" clandestine HEU enrichment plant
- 4) Clandestine NUF6 at Plant "Z"
  - Clandestine conversion or acquisition of NUF6
  - Enrich NU to HEU at Plant "Z"







## Path 1 - Breakout or Misuse at Natanz

- LEU from Natanz as feed ~7800 kgUF6 avail. = (3.5x30B)
- Stage 2 F 3.5%, P 19.2%, T 0.733%
  - 55 days produce 40kgU235
- Stage 3 F 19.2%, P 61%, T 3.5%
  - 11 days produce 28.6kgU235
- Stage 4 F 61%, P 91%, T 19.2%
  - 4 days produce 25kgU235

Source - B. Boyer Calculations (9/2014)

- 1 SQ of U235 produced ~10 weeks of production
- Less than 3 months to breakout or misuse Natanz





## Path 2 - Diversion of LEU to Possible Plant "X"

- Take LEU at Natanz as feed ~7800 kgUF6 available ~(3.5x30B)
- Divert ONE 30B to possible Plant "X" attempt to hide diversion
- Plant "X" ~3000 centrifuges ~ similar to Fordow plant secret location
- Built as one optimized cascade to go from LEU to 91% HEU
  - 20 stages up / 2 stages down P=91% U235, T=1.59% U235
  - 21 enrich / 2 strip stages
  - 140 days produce 25 kgU235

Source - B. Boyer Calculations (9/2014)

- Feed for 1 SQ? = 1916 kgUF6 at 3.5% enrichment (<1 X 30B)</li>
- ~5 months to use Plant "X" to process secretly LEU

OPTIMAL LEU to HEU CASCADE MODEL





## Path 3 - Diversion of DU tails to Possible Plant "Y"

- Take DU at Natanz as feed ~123 tonnes UF6 (0.49% U235) ~(10x48Y)
- Divert 48Y (1/10) to Plant "Y" attempt to hide diversion 12,500 kgUF6
- Plant "Y" ~3000 centrifuges ~ similar to Fordow plant scale secret location
- Built as one optimized cascade to go from DU to 87% HEU
  - 26 stages up/3 stages down P=87% U235, T=0.17% U235
  - 27 enrich / 3 strip
  - ~3 years produce 46 kgUF6, 31 kgU, 27 kgU235
- Clandestine plant designed to enrich NU to HEU
  - Can use ONE tails cylinder to produce SQ of HEU (87%)

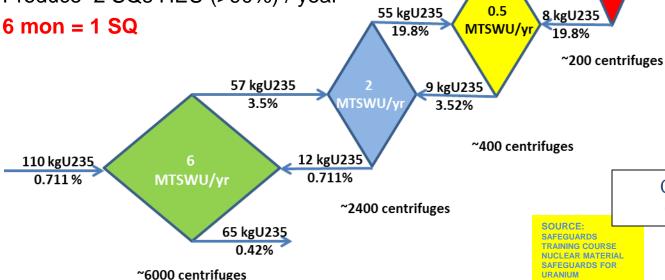
OPTIMAL DU to HEU CASCADE MODEL

Source - B. Boyer Calculations (9/2014)
UNCLASSIFIED





## Path 4 - Clandestine Ops - Possible Plant "Z"


 Mine U ore / obtain foreign ore clandestinely and convert to UF6 in possible clandestine NU conversion plant

Obtain Natural UF6 from foreign black market

Possible Plant "Z" = ~9000 centrifuges

Secret location – ~50 x ~200 centrifuges/cascade

Produce 2 SQs HEU (>90%) / year



Source - B. Boyer Calculations (9/2014)

**UNCLASSIFIED** 



**COUPLED 4 STAGE** 

**CASCADE MODEL** 

57 kgU235

92%

0.2

MTSWU

/yr

65 kgU235

63%



## IAEA - Detecting Diversion of Uranium

### IAEA Inspection regime includes:

- Annual Physical Inventory Verification (UF6 on site, DIV, analysis of data)
- Interim inspections for flow verification (scale of facility) (URENCO monthly)
  - > Iran how many times? Scale of operations? 1x, 4x, 12x per year???
- IAEA verifies feed, product, and tails cylinders Receipts and Shipments
  - OPERATOR holds feed before feeding to process
  - OPERATOR holds tails and product before shipment off-site

### Verification of nuclear material (flows and inventories)

Nondestructive Assay (NDA) / Destructive Assay (DA) [Statistical Sampling]

### Environmental Swipe Samples – powerful tool to detect HEU

For declared facilities and looking for undeclared activities and facilities

| PATH | Туре                            | Time<br>(months) |
|------|---------------------------------|------------------|
| 1    | Three Stage Misuse – LEU-to-HEU | 2.5              |
| 2    | Plant X – LEU-to-HEU            | 5                |
| 3    | Plant Y - DU-to-HEU             | 36               |
| 4    | Plant Z – NU-to-HEU             | 6                |












# Verify Design Information via LFUA

Low Frequency Unannounced Access (LFUA) Inspections



- Access is on a random, unannounced basis
- Access must be provided within 2 hours of request
- Performed 4 -12 times per year (<1000MTSWU/yr)</li>
  - During planned inspections
  - Totally unannounced





Protection of proprietary information by negotiated procedures





## **Environmental Swipe Samples**

## Environmental Sample Swipe Kit

- Powerful tool for undeclared activities
- Detect HEU where not declared
- Where to swipe?
- Avoid Contamination / Site Legacy

**Particle Analysis** 

Detection and analysis of individual micron-size particles containing fissionable materials





Labels Pen Working Papers

Gloves

**Outer Bag** 



Aluminum Foil

Analytical Techniques

- Thermal Ionization Mass Spectrometry (TIMS)

Bag with cotton swipe

Large bag for double bagging



Inspectors demo ES techniques during BNL APEX Training (B. Boyer)



# Enrichment / Proliferation / Safeguards Summary of Issues

### Enrichment is a sensitive technology

- Technology diffusion Zippe / Khan / (Future Lasers?)
- Export controls nuclear technology / dual use
- Safeguarding the technology by the technology holders

### Proliferation

- Iran Open questions on nuclear dossier
- Libya Intercepted centrifuges "Black Market"
- DPRK Revelation of GCEP seen by Sig Hecker

## GCEPS safeguards

- Timely detection of the misuse of the facility to produce HEU
- Timely detection of the diversion of declared UF6
- Timely detection of misuse of facility to produce undeclared LEU
- Breakout vs. Clandestine Ops
- Need for robust safeguards regime



Centrifuge Cases
Destined for Libya in USA



Inspector in Iran 2014





